Roos Katarina, Hogner Anders, Ogg Derek, Packer Martin J, Hansson Eva, Granberg Kenneth L, Evertsson Emma, Nordqvist Anneli
RIA Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden.
CVMD Medicinal Chemistry, AstraZeneca, Pepparedsleden 1, 431 83, Mölndal, Sweden.
J Comput Aided Mol Des. 2015 Dec;29(12):1109-22. doi: 10.1007/s10822-015-9880-1. Epub 2015 Nov 16.
In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R(2) = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R(2) = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.
在药物研发中,在化合物合成之前预测结合亲和力以辅助化合物优先级排序,仍然受到更精确方法通量低以及缺乏适用于所有系统的通用方法的困扰。在此,我们展示了一种基于密度泛函理论的方法的适用性,该方法使用核心片段和仅包含围绕核心的第一壳层残基的蛋白质模型,来预测一系列匹配的盐皮质激素受体(MR)拮抗剂的相对结合亲和力。MR拮抗剂用于治疗慢性心力衰竭和高血压。市售的MR拮抗剂螺内酯和依普利酮,也被认为在治疗糖尿病患者的慢性肾病方面非常有效,但由于高钾血症风险增加而被禁忌。这些发现以及慢性肾病患者中显著未满足的医疗需求,继续推动人们努力发现具有维持疗效但高钾血症风险低或无风险的新型MR拮抗剂。将基于量子力学的方法应用于一系列匹配的MR拮抗剂时,对于实验亲脂性配体效率与在气相中使用M06 - 2X泛函计算的相对预测结合亲和力,得到R² = 0.76;对于实验结合亲和力与使用包含隐式溶剂化模型的M06 - 2X泛函计算的相对预测结合亲和力,得到R² = 0.64。使用核心片段的量子力学方法与使用全尺寸化合物结构的自由能微扰计算进行了比较。