Cecchini Marco
Laboratoire d'Ingénierie des Fonctions Moléculaires Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg , 8 allée Gaspard Monge, F-67083 Strasbourg Cedex, France.
J Chem Theory Comput. 2015 Sep 8;11(9):4011-22. doi: 10.1021/acs.jctc.5b00260. Epub 2015 Aug 18.
The calculation of the free energy of conformation is key in understanding the function of biomolecules and has attracted significant interest in recent years. Most current computational approaches evaluate the difference in conformational free energy in the classical limit based on the common "dogma" that only the lowest-frequency modes make a significant contribution to it, i.e. they assume that quantum mechanical corrections are negligible. Here, I show for three biomolecular systems described in the rigid-rotor, harmonic-oscillator approximation that the zero-point energy contribution, although small, is not negligible even at room temperature. I find that a quantum correction arises from the intermediate-frequency vibrational modes and that its magnitude is strongly correlated with the number of atoms in the system. A straightforward, though approximate, way to account for this quantum correction in the calculation of conformational free-energy differences by classical molecular dynamics is presented. The relevance of the quantum correction analyzed in this paper is discussed in the context of conventional force fields for proteins.
构象自由能的计算是理解生物分子功能的关键,近年来引起了广泛关注。目前大多数计算方法基于常见的“教条”,即在经典极限下评估构象自由能的差异,该“教条”认为只有最低频率模式对其有显著贡献,也就是说,它们假定量子力学修正可忽略不计。在此,我针对在刚性转子、简谐振子近似下描述的三个生物分子系统表明,即使在室温下,零点能贡献虽然很小,但并非可忽略不计。我发现量子修正源于中频振动模式,其大小与系统中的原子数密切相关。本文提出了一种在经典分子动力学计算构象自由能差异时考虑这种量子修正的直接但近似的方法。本文所分析的量子修正的相关性在蛋白质传统力场的背景下进行了讨论。