Suppr超能文献

受生物启发的均匀多尺度位置识别

Bio-inspired homogeneous multi-scale place recognition.

作者信息

Chen Zetao, Lowry Stephanie, Jacobson Adam, Hasselmo Michael E, Milford Michael

机构信息

School of Electrical Engineering and Computer Science, Queensland University of Technology, Australia; Australian Centre for Robotic Vision, Queensland University of Technology, Australia.

School of Electrical Engineering and Computer Science, Queensland University of Technology, Australia.

出版信息

Neural Netw. 2015 Dec;72:48-61. doi: 10.1016/j.neunet.2015.10.002. Epub 2015 Oct 29.

Abstract

Robotic mapping and localization systems typically operate at either one fixed spatial scale, or over two, combining a local metric map and a global topological map. In contrast, recent high profile discoveries in neuroscience have indicated that animals such as rodents navigate the world using multiple parallel maps, with each map encoding the world at a specific spatial scale. While a number of theoretical-only investigations have hypothesized several possible benefits of such a multi-scale mapping system, no one has comprehensively investigated the potential mapping and place recognition performance benefits for navigating robots in large real world environments, especially using more than two homogeneous map scales. In this paper we present a biologically-inspired multi-scale mapping system mimicking the rodent multi-scale map. Unlike hybrid metric-topological multi-scale robot mapping systems, this new system is homogeneous, distinguishable only by scale, like rodent neural maps. We present methods for training each network to learn and recognize places at a specific spatial scale, and techniques for combining the output from each of these parallel networks. This approach differs from traditional probabilistic robotic methods, where place recognition spatial specificity is passively driven by models of sensor uncertainty. Instead we intentionally create parallel learning systems that learn associations between sensory input and the environment at different spatial scales. We also conduct a systematic series of experiments and parameter studies that determine the effect on performance of using different neural map scaling ratios and different numbers of discrete map scales. The results demonstrate that a multi-scale approach universally improves place recognition performance and is capable of producing better than state of the art performance compared to existing robotic navigation algorithms. We analyze the results and discuss the implications with respect to several recent discoveries and theories regarding how multi-scale neural maps are learnt and used in the mammalian brain.

摘要

机器人映射和定位系统通常在单一固定空间尺度下运行,或者结合局部度量地图和全局拓扑地图在两种尺度下运行。相比之下,神经科学领域最近的一些备受瞩目的发现表明,诸如啮齿动物之类的动物利用多个并行地图在世界中导航,每个地图在特定空间尺度上对世界进行编码。虽然一些纯理论研究已经假设了这种多尺度映射系统的几种可能益处,但还没有人全面研究在大型现实世界环境中导航机器人时多尺度映射和地点识别性能的潜在益处,尤其是使用超过两个同类地图尺度的情况。在本文中,我们提出了一种模仿啮齿动物多尺度地图的受生物启发的多尺度映射系统。与混合度量 - 拓扑多尺度机器人映射系统不同,这个新系统是同类的,仅通过尺度可区分,就像啮齿动物的神经地图一样。我们提出了训练每个网络以在特定空间尺度上学习和识别地点的方法,以及组合这些并行网络各自输出的技术。这种方法不同于传统的概率机器人方法,在传统方法中,地点识别的空间特异性是由传感器不确定性模型被动驱动的。相反,我们有意创建并行学习系统,使其在不同空间尺度上学习感官输入与环境之间的关联。我们还进行了一系列系统的实验和参数研究,以确定使用不同神经地图缩放比例和不同数量的离散地图尺度对性能的影响。结果表明,多尺度方法普遍提高了地点识别性能,并且与现有的机器人导航算法相比,能够产生优于当前技术水平的性能。我们分析了结果,并就最近关于哺乳动物大脑中多尺度神经地图如何学习和使用的一些发现和理论进行了讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验