Stewart Kathleen R, Veselovska Lenka, Kim Jeesun, Huang Jiahao, Saadeh Heba, Tomizawa Shin-ichi, Smallwood Sébastien A, Chen Taiping, Kelsey Gavin
Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;
Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, Texas 77030, USA;
Genes Dev. 2015 Dec 1;29(23):2449-62. doi: 10.1101/gad.271353.115. Epub 2015 Nov 19.
Erasure and subsequent reinstatement of DNA methylation in the germline, especially at imprinted CpG islands (CGIs), is crucial to embryogenesis in mammals. The mechanisms underlying DNA methylation establishment remain poorly understood, but a number of post-translational modifications of histones are implicated in antagonizing or recruiting the de novo DNA methylation complex. In mouse oogenesis, DNA methylation establishment occurs on a largely unmethylated genome and in nondividing cells, making it a highly informative model for examining how histone modifications can shape the DNA methylome. Using a chromatin immunoprecipitation (ChIP) and genome-wide sequencing (ChIP-seq) protocol optimized for low cell numbers and novel techniques for isolating primary and growing oocytes, profiles were generated for histone modifications implicated in promoting or inhibiting DNA methylation. CGIs destined for DNA methylation show reduced protective H3K4 dimethylation (H3K4me2) and trimethylation (H3K4me3) in both primary and growing oocytes, while permissive H3K36me3 increases specifically at these CGIs in growing oocytes. Methylome profiling of oocytes deficient in H3K4 demethylase KDM1A or KDM1B indicated that removal of H3K4 methylation is necessary for proper methylation establishment at CGIs. This work represents the first systematic study performing ChIP-seq in oocytes and shows that histone remodeling in the mammalian oocyte helps direct de novo DNA methylation events.
种系中DNA甲基化的擦除及随后的重新建立,尤其是在印记CpG岛(CGI)处,对哺乳动物的胚胎发育至关重要。DNA甲基化建立的潜在机制仍知之甚少,但组蛋白的一些翻译后修饰与拮抗或招募从头DNA甲基化复合物有关。在小鼠卵子发生过程中,DNA甲基化建立发生在一个基本上未甲基化的基因组上且在不分裂的细胞中进行,这使其成为研究组蛋白修饰如何塑造DNA甲基化组的一个极具信息价值的模型。利用针对低细胞数量优化的染色质免疫沉淀(ChIP)和全基因组测序(ChIP-seq)方案以及分离初级卵母细胞和生长中卵母细胞的新技术,生成了与促进或抑制DNA甲基化有关的组蛋白修饰图谱。注定要发生DNA甲基化的CGI在初级卵母细胞和生长中卵母细胞中均显示出保护性的H3K4二甲基化(H3K4me2)和三甲基化(H3K4me3)减少,而允许性的H3K36me3在生长中卵母细胞的这些CGI处特异性增加。对缺乏H3K4去甲基化酶KDM1A或KDM1B的卵母细胞进行甲基化组分析表明,去除H3K4甲基化对于CGI处正确的甲基化建立是必要的。这项工作代表了首次在卵母细胞中进行ChIP-seq的系统研究,并表明哺乳动物卵母细胞中的组蛋白重塑有助于指导从头DNA甲基化事件。