Institute for Optical Sciences and Departments of Chemistry and Physics, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada.
Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
Nat Chem. 2015 Dec;7(12):980-6. doi: 10.1038/nchem.2398. Epub 2015 Nov 16.
The role of vibrational coherence-concerted vibrational motion on the excited-state potential energy surface-in the isomerization of retinal in the protein rhodopsin remains elusive, despite considerable experimental and theoretical efforts. We revisited this problem with resonant ultrafast heterodyne-detected transient-grating spectroscopy. The enhanced sensitivity that this technique provides allows us to probe directly the primary photochemical reaction of vision with sufficient temporal and spectral resolution to resolve all the relevant nuclear dynamics of the retinal chromophore during isomerization. We observed coherent photoproduct formation on a sub-50 fs timescale, and recovered a host of vibrational modes of the retinal chromophore that modulate the transient-grating signal during the isomerization reaction. Through Fourier filtering and subsequent time-domain analysis of the transient vibrational dynamics, the excited-state nuclear motions that drive the isomerization reaction were identified, and comprise stretching, torsional and out-of-plane wagging motions about the local C11=C12 isomerization coordinate.
尽管已经进行了相当多的实验和理论研究,但在视紫红质蛋白中,振动相干性——协同振动运动在激发态势能面上——对视黄醛异构化的作用仍然难以捉摸。我们使用共振超快差频探测瞬态光栅光谱学重新研究了这个问题。该技术提供的增强灵敏度使我们能够直接探测视觉的初始光化学反应,具有足够的时间和光谱分辨率来解析异构化过程中视黄醛发色团的所有相关核动力学。我们在亚 50 fs 的时间尺度上观察到相干光产物的形成,并恢复了一系列调节异构化反应过程中瞬态光栅信号的视黄醛发色团的振动模式。通过瞬态振动动力学的傅里叶滤波和随后的时域分析,确定了驱动异构化反应的激发态核运动,包括围绕局部 C11=C12 异构化坐标的伸缩、扭转和平面外摇摆运动。