Suppr超能文献

使用粗粒度力场SCORPION对溶液中的蛋白质-蛋白质识别进行建模。

Modeling Protein-Protein Recognition in Solution Using the Coarse-Grained Force Field SCORPION.

作者信息

Basdevant Nathalie, Borgis Daniel, Ha-Duong Tap

机构信息

Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR8587 CNRS-UEVE-CEA, Université d'Evry-Val-d'Essonne, Bd François Mitterrand, 91025 Evry Cedex, France.

Ecole Normale Supérieure, Département de Chimie, UMR 8640 CNRS-ENS-UPMC, 24 rue Lhomond, 75005 Paris, France.

出版信息

J Chem Theory Comput. 2013 Jan 8;9(1):803-13. doi: 10.1021/ct300943w. Epub 2012 Dec 20.

Abstract

We present here the SCORPION-Solvated COaRse-grained Protein interactION-force field, a physics-based simplified coarse-grained (CG) force field. It combines our previous CG protein model and a novel particle-based water model which makes it suitable for Molecular Dynamics (MD) simulations of protein association processes. The protein model in SCORPION represents each amino acid with one to three beads, for which electrostatic and van der Waals effective interactions are fitted separately to reproduce those of the all-atom AMBER force field. The protein internal flexibility is accounted for by an elastic network model (ENM). We now include in SCORPION a new Polarizable Coarse-Grained Solvent (PCGS) model, which is computationally efficient, consistent with the protein CG representation, and yields accurate electrostatic free energies of proteins. SCORPION is used here for the first time to perform hundreds-of-nanoseconds-long MD simulations of protein/protein recognition in water, here the case of the barnase/barstar complex. These MD simulations showed that, for five of a total of seven simulations starting from several initial conformations, and after a time going from 1 to 500 ns, the proteins bind in a conformation very close to the native bound structure and remain stable in this conformation for the rest of the simulation. An energetic analysis of these MD show that this recognition is driven both by van der Waals and electrostatic interactions between proteins. SCORPION appears therefore as a useful tool to study protein-protein recognition in a solvated environment.

摘要

我们在此展示SCORPION-溶剂化粗粒度蛋白质相互作用力场,这是一种基于物理学的简化粗粒度(CG)力场。它结合了我们之前的CG蛋白质模型和一种新型的基于粒子的水模型,使其适用于蛋白质缔合过程的分子动力学(MD)模拟。SCORPION中的蛋白质模型用一到三个珠子表示每个氨基酸,其静电和范德华有效相互作用分别进行拟合,以重现全原子AMBER力场的相互作用。蛋白质的内部柔韧性由弹性网络模型(ENM)来描述。我们现在在SCORPION中纳入了一种新的可极化粗粒度溶剂(PCGS)模型,该模型计算效率高,与蛋白质的CG表示一致,并能准确给出蛋白质的静电自由能。本文首次使用SCORPION对水中蛋白质/蛋白质识别进行长达数百纳秒的MD模拟,这里以巴那斯酶/巴抑蛋白酶复合物为例。这些MD模拟表明,从几种初始构象开始的总共七次模拟中的五次,在1到500纳秒的时间后,蛋白质以非常接近天然结合结构的构象结合,并在模拟的剩余时间内保持该构象稳定。对这些MD的能量分析表明,这种识别是由蛋白质之间的范德华相互作用和静电相互作用共同驱动的。因此,SCORPION似乎是研究溶剂化环境中蛋白质-蛋白质识别的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验