Vinueza Nelson R, Jankiewicz Bartłomiej J, Gallardo Vanessa A, LaFavers Gregory Z, DeSutter Dane, Nash John J, Kenttämaa Hilkka I
Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, NC 27695 (USA).
Institute of Optoelectronics, Military University of Technology, Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw (Poland).
Chemistry. 2016 Jan 11;22(2):809-15. doi: 10.1002/chem.201502502. Epub 2015 Nov 23.
The chemical properties of the 4,5,8-tridehydroisoquinolinium ion (doublet ground state) and related mono- and biradicals were examined in the gas phase in a dual-cell Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The triradical abstracted three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5- and 8-dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8-biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4-dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin-spin coupling play major roles in controlling the overall reactivity of the triradical, spin-spin coupling determines the relative reactivity of the three radical sites.
在双池傅里叶变换离子回旋共振(FT-ICR)质谱仪中,对气相中的4,5,8-三脱氢异喹啉鎓离子(双重态基态)及相关单自由基和双自由基的化学性质进行了研究。该三自由基以连续方式从四氢呋喃(THF)和环己烷分子中夺取了三个氢原子;这表明该分子中存在三个反应性自由基位点。自由基位点处较高的(计算得到的)电子亲和能(EA = 6.06 eV)使得该三自由基比两个相关的单自由基,即5-和8-脱氢异喹啉鎓离子(EA分别为4.87和5.06 eV)更具反应性,后两者的反应性主要受极性效应控制。计算得到的三自由基稳定能预测,三自由基中最具反应性的自由基位点并非如基于该自由基位点的高电子亲和能所预期的C4位,而是C5位。实际上,后一个自由基位点使单重态耦合的4,8-双自由基部分不稳定。确实,实验反应性研究表明C5位的自由基位点首先发生反应。这就解释了为什么该三自由基的反应性并不比4-脱氢异喹啉鎓离子更强,因为由于其低电子亲和能,C5位点在三个自由基位点中本质上是反应性最低的。尽管电子亲和能和自旋-自旋耦合在控制三自由基的整体反应性方面都起主要作用,但自旋-自旋耦合决定了三个自由基位点的相对反应性。