Di Jeso Bruno, Arvan Peter
Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105.
Endocr Rev. 2016 Feb;37(1):2-36. doi: 10.1210/er.2015-1090. Epub 2015 Nov 23.
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER), where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the cholinesterase-like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary T4-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occurs spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
甲状腺球蛋白(Tg)是一种在甲状腺细胞内质网(ER)中合成的脊椎动物分泌蛋白,在那里它进行N-糖基化和构象成熟(包括形成许多二硫键),导致同源二聚化。其主要功能包括碘储存和甲状腺激素生成。Tg主要由重复结构域组成,这些结构域中的许多酪氨酸残基会碘化形成一碘酪氨酸和二碘酪氨酸,而只有一小部分Tg结构用于激素形成。有趣的是,依赖甲状腺激素进行发育的进化祖先在没有完整Tg蛋白结构的情况下合成甲状腺激素。然而,在所有脊椎动物中,Tg都遵循I区、II-III区和类胆碱酯酶(ChEL)结构域的严格模式。在脊椎动物中,Tg首先通过分泌途径进行细胞内运输,这需要甲状腺细胞内质网伴侣蛋白和氧化还原酶的协助,以及Tg不同区域的协调,以实现天然构象。奇怪的是,II-III区和ChEL表现为完全独立的折叠单元,它们自身可以作为成功的分泌蛋白发挥作用。然而,大的Tg I区(带有主要的T4形成位点)自身无法进行细胞内运输,需要下游的II-III区和ChEL来完成其折叠。Tg中自发出现的无义突变、移码突变、剪接位点突变和错义突变的组合会导致先天性甲状腺功能减退和甲状腺内质网应激。这些Tg突变体无法在内质网内形成天然构象,干扰了Tg成熟和输出到甲状腺滤泡腔进行碘储存和激素生成的效率。