Suppr超能文献

Global Exponential Stability of Cohen-Grossberg Neural Networks with Piecewise Constant Argument of Generalized Type and Impulses.

作者信息

Xi Qiang

机构信息

School of Mathematic and Quantitative Economics, Shandong University of Finance and Economics, Ji'nan 250002, P.R.C.

出版信息

Neural Comput. 2016 Jan;28(1):229-55. doi: 10.1162/NECO_a_00797. Epub 2015 Nov 24.

Abstract

In this letter, we consider a model of Cohen-Grossberg neural networks with piecewise constant argument of generalized type and impulses. Sufficient conditions ensuring the existence and uniqueness of solutions are obtained. Based on constructing a new differential inequality with piecewise constant argument and impulse and using the Lyapunov function method, we derive sufficient conditions ensuring the global exponential stability of equilibrium point, with approximate exponential convergence rate. An example is given to illustrate the validity and advantage of the theoretical results.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验