Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan.
Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan. Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan.
Cancer Discov. 2016 Apr;6(4):430-45. doi: 10.1158/2159-8290.CD-15-0754. Epub 2015 Nov 24.
Loss-of-function mutations in the CBP/CREBBP gene, which encodes a histone acetyltransferase (HAT), are present in a variety of human tumors, including lung, bladder, gastric, and hematopoietic cancers. Consequently, development of a molecular targeting method capable of specifically killing CBP-deficient cancer cells would greatly improve cancer therapy. Functional screening of synthetic-lethal genes in CBP-deficient cancers identified the CBP paralog p300/EP300 Ablation of p300 in CBP-knockout and CBP-deficient cancer cells induced G1-S cell-cycle arrest, followed by apoptosis. Genome-wide gene expression analysis revealed that MYC is a major factor responsible for the synthetic lethality. Indeed, p300 ablation in CBP-deficient cells caused downregulation of MYC expression via reduction of histone acetylation in its promoter, and this lethality was rescued by exogenous MYC expression. The p300-HAT inhibitor C646 specifically suppressed the growth of CBP-deficient lung and hematopoietic cancer cells in vitro and in vivo; thus p300 is a promising therapeutic target for treatment of CBP-deficient cancers.
Targeting synthetic-lethal partners of genes mutated in cancer holds great promise for treating patients without activating driver gene alterations. Here, we propose a "synthetic lethal-based therapeutic strategy" for CBP-deficient cancers by inhibition of the p300 HAT activity. Patients with CBP-deficient cancers could benefit from therapy using p300-HAT inhibitors.
CBP/CREBBP 基因(编码组蛋白乙酰转移酶 [HAT])的功能丧失性突变存在于多种人类肿瘤中,包括肺癌、膀胱癌、胃癌和血液系统癌症。因此,开发一种能够特异性杀死 CBP 缺陷型癌细胞的分子靶向方法将极大地改善癌症治疗。在 CBP 缺陷型癌症中对合成致死基因进行功能筛选,鉴定出 CBP 旁系同源物 p300/EP300。在 CBP 敲除和 CBP 缺陷型癌细胞中敲除 p300 会诱导 G1-S 细胞周期停滞,随后发生细胞凋亡。全基因组基因表达分析显示,MYC 是导致合成致死的主要因素。事实上,CBP 缺陷型细胞中 p300 的缺失通过降低其启动子中的组蛋白乙酰化导致 MYC 表达下调,而通过外源性 MYC 表达可挽救这种致死性。p300-HAT 抑制剂 C646 特异性抑制体外和体内 CBP 缺陷型肺癌和血液系统癌细胞的生长;因此,p300 是治疗 CBP 缺陷型癌症的有前途的治疗靶点。
针对癌症中突变基因的合成致死伙伴具有为没有激活驱动基因改变的患者治疗的巨大潜力。在这里,我们通过抑制 p300 HAT 活性,提出了一种针对 CBP 缺陷型癌症的“基于合成致死的治疗策略”。CBP 缺陷型癌症患者可能受益于使用 p300-HAT 抑制剂的治疗。