Lenk Guy M, Frei Christen M, Miller Ashley C, Wallen Rachel C, Mironova Yevgeniya A, Giger Roman J, Meisler Miriam H
Department of Human Genetics,
Department of Human Genetics.
Hum Mol Genet. 2016 Jan 15;25(2):340-7. doi: 10.1093/hmg/ddv480. Epub 2015 Nov 24.
The lipid phosphatase FIG4 is a subunit of the protein complex that regulates biosynthesis of the signaling lipid PI(3,5)P2. Mutations of FIG4 result in juvenile lethality and spongiform neurodegeneration in the mouse, and are responsible for the human disorders Charcot-Marie-Tooth disease, Yunis-Varon syndrome and polymicrogyria with seizures. We previously demonstrated that conditional expression of a wild-type FIG4 transgene in neurons is sufficient to rescue most of the abnormalities of Fig4 null mice, including juvenile lethality and extensive neurodegeneration. To evaluate the contribution of the phosphatase activity to the in vivo function of Fig4, we introduced the mutation p.Cys486Ser into the Sac phosphatase active-site motif CX5RT. Transfection of the Fig4(Cys486Ser) cDNA into cultured Fig4(-/-) fibroblasts was effective in preventing vacuolization. The neuronal expression of an NSE-Fig4(Cys486Ser) transgene in vivo prevented the neonatal neurodegeneration and juvenile lethality seen in Fig4 null mice. These observations demonstrate that the catalytically inactive FIG4 protein provides significant function, possibly by stabilization of the PI(3,5)P2 biosynthetic complex and/or localization of the complex to endolysosomal vesicles. Despite this partial rescue, later in life the NSE-Fig4(Cys486Ser) transgenic mice display significant abnormalities that include hydrocephalus, defective myelination and reduced lifespan. The late onset phenotype of the NSE-Fig4(Cys486Ser) transgenic mice demonstrates that the phosphatase activity of FIG4 has an essential role in vivo.
脂质磷酸酶FIG4是调节信号脂质PI(3,5)P2生物合成的蛋白质复合物的一个亚基。FIG4突变会导致小鼠幼年致死和海绵状神经变性,并引发人类疾病,如夏科-马里-图斯病、尤尼斯-瓦伦综合征以及伴有癫痫的多小脑回畸形。我们之前证明,在神经元中条件性表达野生型FIG4转基因足以挽救Fig4基因敲除小鼠的大部分异常,包括幼年致死和广泛的神经变性。为了评估磷酸酶活性对Fig4体内功能的贡献,我们将p.Cys486Ser突变引入Sac磷酸酶活性位点基序CX5RT。将Fig4(Cys486Ser) cDNA转染到培养的Fig4(-/-)成纤维细胞中可有效防止空泡化。体内NSE-Fig4(Cys486Ser)转基因的神经元表达可预防Fig4基因敲除小鼠出现的新生儿神经变性和幼年致死。这些观察结果表明,催化失活的FIG4蛋白具有重要功能,可能是通过稳定PI(3,5)P2生物合成复合物和/或将该复合物定位于内溶酶体囊泡。尽管有这种部分挽救作用,但在生命后期,NSE-Fig4(Cys486Ser)转基因小鼠仍表现出明显异常,包括脑积水、髓鞘形成缺陷和寿命缩短。NSE-Fig4(Cys486Ser)转基因小鼠的迟发性表型表明FIG4的磷酸酶活性在体内具有重要作用。