Suppr超能文献

对生物发色团上的近似二阶耦合簇方法进行基准测试。

Benchmarking the Approximate Second-Order Coupled-Cluster Method on Biochromophores.

作者信息

Send Robert, Kaila Ville R I, Sundholm Dage

机构信息

Institut für Physikalische Chemie, Karlsruher Institut für Technologie , Kaiserstrasse 12, 76131 Karlsruhe, Germany.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , 5 Memorial Drive, Bethesda, Maryland, United States.

出版信息

J Chem Theory Comput. 2011 Aug 9;7(8):2473-84. doi: 10.1021/ct200215d. Epub 2011 Jul 25.

Abstract

Extensive benchmarking calculations are presented to assess the accuracy of commonly used quantum chemical methods in studying excited state properties of biochromophores. The first few excited states of 12 common model chromophores of photoactive yellow protein, green fluorescent protein, and rhodopsin have been studied using approximate second-order coupled-cluster (CC2) and linear-response time-dependent density functional theory (TDDFT) calculations. The study comprises investigations of basis-set dependences on CC2 excitation energies as well as comparisons of the CC2 results with excitation energies obtained at other computational levels and with experimental data. The basis-set study shows that the accuracy of the two lowest excitation energies is generally sufficient when triple-ζ basis sets augmented with polarization functions are employed, whereas the third and higher excited states were found to require diffuse basis functions in the basis set. Augmenting the basis set with diffuse functions contributes less than 0.15 eV to the excitation energies of low-lying excited states, except for some of the studied anionic states and for Rydberg states. Calculations at the TDDFT level using the B3LYP functional show the necessity of stabilizing anions with point charges or counterions when aiming at reliable electronic excitation spectra. The two lowest excitation energies of the green fluorescent protein and rhodopsin chromophores calculated at the CC2 level agree within 0.15 eV with experimental excitation energies, whereas the B3LYP values are somewhat less accurate, with a maximum deviation of 0.27 eV. The computed excitation energies for the photoactive yellow protein chromophore models deviate from available experimental values by 0.3-0.4 eV and 0.1-0.5 eV, at the CC2 and B3LYP levels of theory, respectively.

摘要

本文进行了广泛的基准计算,以评估常用量子化学方法在研究生物发色团激发态性质时的准确性。使用近似二阶耦合簇(CC2)和线性响应含时密度泛函理论(TDDFT)计算研究了光活性黄色蛋白、绿色荧光蛋白和视紫红质的12种常见模型发色团的前几个激发态。该研究包括对基组对CC2激发能的依赖性的研究,以及将CC2结果与在其他计算水平获得的激发能和实验数据进行比较。基组研究表明,当使用添加了极化函数的三重ζ基组时,两个最低激发能的准确性通常足够,而发现第三及更高激发态在基组中需要弥散基函数。除了一些研究的阴离子态和里德堡态外,用弥散函数扩展基组对低激发态激发能的贡献小于0.15 eV。使用B3LYP泛函在TDDFT水平上的计算表明,当目标是获得可靠的电子激发光谱时,用点电荷或抗衡离子稳定阴离子的必要性。在CC2水平计算的绿色荧光蛋白和视紫红质发色团的两个最低激发能与实验激发能在0.15 eV内相符,而B3LYP值的准确性稍差,最大偏差为0.27 eV。在CC2和B3LYP理论水平上,光活性黄色蛋白发色团模型的计算激发能分别与现有实验值相差0.3 - 0.4 eV和0.1 - 0.5 eV。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验