Department of Ecology and Environmental Science and ‡Department of Chemistry, Umeå University , SE-90187 Umeå, Sweden.
J Phys Chem A. 2015 Dec 24;119(51):12790-6. doi: 10.1021/acs.jpca.5b09821. Epub 2015 Dec 8.
Dissolved natural organic matter (NOM) sorption at mineral surfaces can significantly affect the persistence of organic carbon in soils and sediments. Consequently, determining the mechanisms that stabilize sorbed NOM is crucial for predicting the persistence of carbon in nature. This study determined the effects of loadings and pH on the thermal stability of NOM associated with synthetic goethite (α-FeOOH) particle surfaces, as a proxy for NOM-mineral interactions taking place in nature. NOM thermal stability was investigated using temperature-programmed desorption (TPD) in the 30-700 °C range to collect vibration spectra of thermally decomposing goethite-NOM assemblages, and to concomitantly analyze evolved gases using mass spectrometry. Results showed that NOM thermal stability, indicated by the range of temperatures in which CO2 evolved during thermal decomposition, was greatest in unbound NOM and lowest when NOM was bound to goethite. NOM thermal stability was also loading dependent. It decreased when loadings were in increased the 0.01 to 0.42 mg C m(-2) range, where the upper value corresponds to a Langmuirian adsorption maximum. Concomitant Fourier transform infrared (FTIR) spectroscopy measurement showed that these lowered stabilities could be ascribed to direct NOM-goethite interactions that dominated the NOM binding environment. Mineral surface interactions at larger loadings involved, on the contrary, a smaller fraction of the sorbed NOM, thus increasing thermal stability toward that of its unbound counterpart. This study thus identifies a sorption threshold below which NOM sorption to goethite decreases NOM thermal stability, and above which no strong effects are manifested. This should likely influence the fate of organic carbon exposed to thermal gradients in natural environments.
溶解态天然有机物(NOM)在矿物表面的吸附会显著影响土壤和沉积物中有机碳的持久性。因此,确定稳定吸附态 NOM 的机制对于预测自然界中碳的持久性至关重要。本研究通过程序升温脱附(TPD)在 30-700°C 范围内测定了负载量和 pH 值对与合成针铁矿(α-FeOOH)颗粒表面结合的 NOM 热稳定性的影响,以此作为模拟自然条件下 NOM-矿物相互作用的指标。通过温度程序升温脱附(TPD)收集热分解针铁矿-NOM 组装体的振动谱,并同时使用质谱分析释放的气体,研究了 NOM 的热稳定性。结果表明,NOM 的热稳定性(以热分解过程中 CO2 释放的温度范围来表示)在未结合的 NOM 中最大,在与针铁矿结合时最小。NOM 的热稳定性还与负载量有关。当负载量在 0.01 到 0.42mg C m(-2) 范围内增加时,NOM 的热稳定性降低,其中上限值对应于 Langmuir 吸附最大值。同时进行的傅里叶变换红外(FTIR)光谱测量表明,这些降低的稳定性可归因于占主导地位的 NOM 结合环境的直接 NOM-针铁矿相互作用。在较大负载量下的矿物表面相互作用则相反,吸附的 NOM 只有一小部分,因此其热稳定性增加到与其未结合的对应物相似的水平。因此,本研究确定了一个吸附阈值,低于该阈值,NOM 与针铁矿的吸附会降低 NOM 的热稳定性,而高于该阈值则不会表现出强烈的影响。这可能会影响暴露在自然环境热梯度下的有机碳的命运。