Suppr超能文献

胎儿生长受限对脑结构和神经发育结局的影响。

The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.

作者信息

Miller Suzanne L, Huppi Petra S, Mallard Carina

机构信息

The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.

Division of Development and Growth, Department of Pediatrics, University of Geneva, Switzerland.

出版信息

J Physiol. 2016 Feb 15;594(4):807-23. doi: 10.1113/JP271402. Epub 2016 Jan 5.

Abstract

Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions.

摘要

胎儿生长受限(FGR)是一种严重的妊娠并发症,指胎儿因病理损害而未能充分发育至其应有的生长潜力。在高收入国家,FGR影响3%至9%的妊娠,是围产期死亡和发病的主要原因。胎盘功能不全是FGR的主要原因,可导致胎儿慢性缺氧。这种缺氧会引发胎儿的心输出量重新分布的适应性反应,以利于包括大脑在内的重要器官,因此被称为脑保护效应。尽管如此,现在很明显,脑保护效应并不能确保生长受限胎儿的大脑正常发育。在这篇综述中,我们汇集了来自人类和实验动物研究的现有证据,以描述因FGR而发生的大脑结构和功能的复杂变化。在人类和动物中,神经发育结局受FGR发病时间、FGR严重程度以及分娩时的孕周影响。FGR与全脑体积减小、皮质体积和结构改变、细胞总数减少以及髓鞘形成缺陷广泛相关。脑连接性也受损,表现为神经元迁移缺陷、树突过程减少以及长距离连接减少导致的网络效率降低。在这些结构改变之后,已有研究描述了患有FGR的学龄儿童的短期和长期功能后果,最常见的包括运动技能、认知、记忆和神经心理功能障碍方面的问题。

相似文献

1
The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.
J Physiol. 2016 Feb 15;594(4):807-23. doi: 10.1113/JP271402. Epub 2016 Jan 5.
2
Early- versus Late-Onset Fetal Growth Restriction Differentially Affects the Development of the Fetal Sheep Brain.
Dev Neurosci. 2017;39(1-4):141-155. doi: 10.1159/000456542. Epub 2017 Mar 9.
3
Altered trajectory of neurodevelopment associated with fetal growth restriction.
Exp Neurol. 2022 Jan;347:113885. doi: 10.1016/j.expneurol.2021.113885. Epub 2021 Oct 7.
4
Detection and assessment of brain injury in the growth-restricted fetus and neonate.
Pediatr Res. 2017 Aug;82(2):184-193. doi: 10.1038/pr.2017.37. Epub 2017 May 17.
5
Perinatal changes in cardiac geometry and function in growth-restricted fetuses at term.
Ultrasound Obstet Gynecol. 2019 May;53(5):655-662. doi: 10.1002/uog.19193. Epub 2019 Apr 9.
6
Cardiac function in fetal growth restriction.
Minerva Obstet Gynecol. 2021 Aug;73(4):423-434. doi: 10.23736/S2724-606X.21.04787-0. Epub 2021 Apr 27.
7
Hemodynamic findings in normotensive women with small-for-gestational-age and growth-restricted fetuses.
Acta Obstet Gynecol Scand. 2021 May;100(5):876-883. doi: 10.1111/aogs.14026. Epub 2020 Nov 29.

引用本文的文献

1
Biomarkers for early detection and monitoring of abnormal brain development in mild fetal growth restriction.
iScience. 2025 Jul 30;28(9):113237. doi: 10.1016/j.isci.2025.113237. eCollection 2025 Sep 19.
2
Oxidative stress biomarkers in fetal growth restriction: a systematic review and meta-analysis.
Arch Gynecol Obstet. 2025 Oct;312(4):1063-1084. doi: 10.1007/s00404-025-08133-0. Epub 2025 Jul 30.
4
Fetal MRI study of brain differences in early-onset fetal growth restriction versus healthy controls at 30 weeks of gestation.
Eur J Obstet Gynecol Reprod Biol X. 2025 Jul 3;27:100417. doi: 10.1016/j.eurox.2025.100417. eCollection 2025 Sep.
6
The role of nutrition and gut microbiome in childhood brain development and behavior.
Front Nutr. 2025 Jun 9;12:1590172. doi: 10.3389/fnut.2025.1590172. eCollection 2025.
7
The Fetal Region-specific Optimized Growth Standard (FROGS)-A fetal and birthweight centile calculator validated in a national population.
PLoS Med. 2025 Jun 20;22(6):e1004634. doi: 10.1371/journal.pmed.1004634. eCollection 2025 Jun.
8
Do adversities in the intrauterine and neonatal periods interfere with intelligence?
Rev Saude Publica. 2025 Jun 16;59:e15. doi: 10.11606/s1518-8787.2025059006206. eCollection 2025.
9
Prenatal exposure to phthalate mixtures and child neurodevelopment in toddlers aged 1-3 years from the PROTECT birth cohort.
Int J Hyg Environ Health. 2025 Jul;268:114599. doi: 10.1016/j.ijheh.2025.114599. Epub 2025 Jun 4.
10
The Update of Fetal Growth Restriction Associated with Biomarkers.
Matern Fetal Med. 2022 Jul 22;4(3):210-217. doi: 10.1097/FM9.0000000000000156. eCollection 2022 Jul.

本文引用的文献

1
Does fetal growth restriction lead to increased brain injury as detected by neonatal cranial ultrasound in premature infants?
J Paediatr Child Health. 2015 Nov;51(11):1103-8. doi: 10.1111/jpc.12910. Epub 2015 May 4.
2
Animal models of fetal growth restriction: Considerations for translational medicine.
Placenta. 2015 Jun;36(6):623-30. doi: 10.1016/j.placenta.2015.03.003. Epub 2015 Mar 13.
3
Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury.
Int J Dev Neurosci. 2015 Oct;45:29-38. doi: 10.1016/j.ijdevneu.2015.03.009. Epub 2015 Mar 26.
4
Cerebrovascular adaptations to chronic hypoxia in the growth restricted lamb.
Int J Dev Neurosci. 2015 Oct;45:55-65. doi: 10.1016/j.ijdevneu.2015.01.004. Epub 2015 Jan 29.
5
Impact of inhaled nitric oxide on white matter damage in growth-restricted neonatal rats.
Pediatr Res. 2015 Apr;77(4):563-9. doi: 10.1038/pr.2015.4. Epub 2015 Jan 12.
6
Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks' gestation.
Am J Obstet Gynecol. 2015 Apr;212(4):520.e1-7. doi: 10.1016/j.ajog.2014.10.1103. Epub 2014 Oct 30.
7
Impact of chronic hypoxemia on blood flow to the brain, heart, and adrenal gland in the late-gestation IUGR sheep fetus.
Am J Physiol Regul Integr Comp Physiol. 2015 Feb 1;308(3):R151-62. doi: 10.1152/ajpregu.00036.2014. Epub 2014 Nov 26.
9
Ultrasound evaluation of cortical brain development in fetuses with intrauterine growth restriction.
J Matern Fetal Neonatal Med. 2015 Jul;28(11):1302-1307. doi: 10.3109/14767058.2014.953474. Epub 2014 Sep 10.
10
Long-term reorganization of structural brain networks in a rabbit model of intrauterine growth restriction.
Neuroimage. 2014 Oct 15;100:24-38. doi: 10.1016/j.neuroimage.2014.05.065. Epub 2014 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验