Suppr超能文献

果蝇幼虫肌肉组织中线粒体结构与功能的分析。

Analysis of mitochondrial structure and function in the Drosophila larval musculature.

作者信息

Wang Zong-Heng, Clark Cheryl, Geisbrecht Erika R

机构信息

Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, United States.

Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, United States.

出版信息

Mitochondrion. 2016 Jan;26:33-42. doi: 10.1016/j.mito.2015.11.005. Epub 2015 Dec 1.

Abstract

Mitochondria are dynamic organelles that change their architecture in normal physiological conditions. Mutations in genes that control mitochondrial fission or fusion, such as dynamin-related protein (Drp1), Mitofusins 1 (Mfn1) and 2 (Mfn2), and Optic atrophy 1 (Opa1), result in neuropathies or neurodegenerative diseases. It is increasingly clear that altered mitochondrial dynamics also underlie the pathology of other degenerative diseases, including Parkinson's disease (PD). Thus, understanding mitochondrial distribution, shape, and dynamics in all cell types is a prerequisite for developing and defining treatment regimens that may differentially affect tissues. The majority of Drosophila genes implicated in mitochondrial dynamics have been studied in the adult indirect flight muscle (IFM). Here, we discuss the utility of Drosophila third instar larvae (L3) as an alternative model to analyze and quantify mitochondrial behaviors. Advantages include large muscle cell size, a stereotyped arrangement of mitochondria that is conserved in mammalian muscles, and the ability to analyze muscle-specific gene function in mutants that are lethal prior to adult stages. In particular, we highlight methods for sample preparation and analysis of mitochondrial morphological features.

摘要

线粒体是动态细胞器,在正常生理条件下会改变其结构。控制线粒体分裂或融合的基因突变,如动力相关蛋白(Drp1)、线粒体融合蛋白1(Mfn1)和2(Mfn2)以及视神经萎缩蛋白1(Opa1),会导致神经病变或神经退行性疾病。越来越明显的是,线粒体动力学改变也是包括帕金森病(PD)在内的其他退行性疾病病理的基础。因此,了解所有细胞类型中线粒体的分布、形状和动力学是开发和确定可能对不同组织产生不同影响的治疗方案的先决条件。大多数与线粒体动力学相关的果蝇基因已在成年间接飞行肌(IFM)中进行了研究。在这里,我们讨论了果蝇三龄幼虫(L3)作为分析和量化线粒体行为的替代模型的实用性。优点包括肌肉细胞尺寸大、线粒体的模式化排列在哺乳动物肌肉中是保守的,以及能够在成年前致死的突变体中分析肌肉特异性基因功能。特别是,我们重点介绍了线粒体形态特征的样品制备和分析方法。

相似文献

1
Analysis of mitochondrial structure and function in the Drosophila larval musculature.
Mitochondrion. 2016 Jan;26:33-42. doi: 10.1016/j.mito.2015.11.005. Epub 2015 Dec 1.
2
A proteomic screen with Drosophila Opa1-like identifies Hsc70-5/Mortalin as a regulator of mitochondrial morphology and cellular homeostasis.
Int J Biochem Cell Biol. 2014 Sep;54:36-48. doi: 10.1016/j.biocel.2014.05.041. Epub 2014 Jul 1.
4
Structure, function, and regulation of mitofusin-2 in health and disease.
Biol Rev Camb Philos Soc. 2018 May;93(2):933-949. doi: 10.1111/brv.12378. Epub 2017 Oct 25.
6
Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):7070-5. doi: 10.1073/pnas.0711845105. Epub 2008 Apr 28.
7
Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis.
Methods. 2016 Mar 1;96:103-117. doi: 10.1016/j.ymeth.2015.09.028. Epub 2015 Oct 1.
8
Less than perfect divorces: dysregulated mitochondrial fission and neurodegeneration.
Acta Neuropathol. 2012 Feb;123(2):189-203. doi: 10.1007/s00401-011-0930-z. Epub 2011 Dec 17.
9
Mitochondrial dynamics in health and disease.
FEBS Lett. 2021 Apr;595(8):1184-1204. doi: 10.1002/1873-3468.14077. Epub 2021 Apr 5.
10

引用本文的文献

1
Loss of nuclear envelope bud formation leads to mitophagy initiation in muscles.
Autophagy Rep. 2025 Mar 4;4(1):2471121. doi: 10.1080/27694127.2025.2471121. eCollection 2025.
2
Studying Cellular Senescence Using the Model Organism Drosophila melanogaster.
Methods Mol Biol. 2025;2906:281-299. doi: 10.1007/978-1-0716-4426-3_17.
6
Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC.
PLoS Genet. 2023 Apr 25;19(4):e1010493. doi: 10.1371/journal.pgen.1010493. eCollection 2023 Apr.
7
Loss of Drosophila Clueless differentially affects the mitochondrial proteome compared to loss of Sod2 and Pink1.
Front Physiol. 2022 Oct 26;13:1004099. doi: 10.3389/fphys.2022.1004099. eCollection 2022.
8
Mitochondrial fusion regulates proliferation and differentiation in the type II neuroblast lineage in Drosophila.
PLoS Genet. 2022 Feb 14;18(2):e1010055. doi: 10.1371/journal.pgen.1010055. eCollection 2022 Feb.
9
An exon junction complex-independent function of Barentsz in neuromuscular synapse growth.
EMBO Rep. 2022 Jan 5;23(1):e53231. doi: 10.15252/embr.202153231. Epub 2021 Nov 2.

本文引用的文献

1
MDS clinical diagnostic criteria for Parkinson's disease.
Mov Disord. 2015 Oct;30(12):1591-601. doi: 10.1002/mds.26424.
2
Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase.
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12093-8. doi: 10.1073/pnas.1515623112. Epub 2015 Sep 11.
3
Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice.
Oncotarget. 2015 Jul 20;6(20):17923-37. doi: 10.18632/oncotarget.4235.
4
How mitochondrial dynamism orchestrates mitophagy.
Circ Res. 2015 May 22;116(11):1835-49. doi: 10.1161/CIRCRESAHA.116.306374.
6
Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts.
Cell Metab. 2015 Feb 3;21(2):273-286. doi: 10.1016/j.cmet.2014.12.011. Epub 2015 Jan 15.
9
The complex I subunit NDUFA10 selectively rescues Drosophila pink1 mutants through a mechanism independent of mitophagy.
PLoS Genet. 2014 Nov 20;10(11):e1004815. doi: 10.1371/journal.pgen.1004815. eCollection 2014 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验