Xia Yu, Serra Francesca, Kamien Randall D, Stebe Kathleen J, Yang Shu
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104;
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15291-6. doi: 10.1073/pnas.1513348112. Epub 2015 Nov 30.
Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole-dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully "locked," allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM.
液晶(LCs)由于其分子排列的各向异性,在显示行业和软物质领域都备受关注,它是制造更复杂光学器件、引导相分离以及促进胶体组装的一种途径。然而,在不改变液晶指向矢的情况下直接探测非玻璃态向列型液晶分子的分子尺度组织仍然具有挑战性。我们设计并合成了一种新型的具有强偶极 - 偶极相互作用的向列型液晶单体(LCM)体系,该体系能形成稳定的向列相,并在二氧化硅表面具有强垂直取向锚定作用。光聚合后,指向矢场能够被如实地“锁定”,从而可以通过扫描电子显微镜(SEM)在真实空间中以100纳米的分辨率直接观察液晶指向矢场和缺陷结构。利用这项技术,我们研究了更复杂的液晶/胶体体系中的向列织构,并计算了液晶单体的外推长度。