Suppr超能文献

球形红细菌反应中心的突变扰乱了能级和振动耦合,但未观察到能量转移速率。

Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates.

作者信息

Flanagan Moira L, Long Phillip D, Dahlberg Peter D, Rolczynski Brian S, Massey Sara C, Engel Gregory S

机构信息

Department of Chemistry, The James Franck Institute and The Institute for Biophysical Dynamics, The University of Chicago , Chicago, Illinois 60637, United States.

出版信息

J Phys Chem A. 2016 Mar 10;120(9):1479-87. doi: 10.1021/acs.jpca.5b08366. Epub 2015 Dec 16.

Abstract

The bacterial reaction center is capable of both efficiently collecting and quickly transferring energy within the complex; therefore, the reaction center serves as a convenient model for both energy transfer and charge separation. To spectroscopically probe the interactions between the electronic excited states on the chromophores and their intricate relationship with vibrational motions in their environment, we examine coherences between the excited states. Here, we investigate this question by introducing a series of point mutations within 12 Å of the special pair of bacteriochlorophylls in the Rhodobacter sphaeroides reaction center. Using two-dimensional spectroscopy, we find that the time scales of energy transfer dynamics remain unperturbed by these mutations. However, within these spectra, we detect changes in the mixed vibrational-electronic coherences in these reaction centers. Our results indicate that resonance between bacteriochlorophyll vibrational modes and excitonic energy gaps promote electronic coherences and support current vibronic models of photosynthetic energy transfer.

摘要

细菌反应中心能够在复合物内部高效收集并快速转移能量;因此,反应中心成为研究能量转移和电荷分离的便捷模型。为了通过光谱学方法探究发色团上电子激发态之间的相互作用及其与周围环境中振动运动的复杂关系,我们研究了激发态之间的相干性。在此,我们通过在球形红细菌反应中心特殊对的细菌叶绿素12 Å范围内引入一系列点突变来研究这个问题。利用二维光谱,我们发现能量转移动力学的时间尺度不受这些突变的影响。然而,在这些光谱中,我们检测到这些反应中心中混合振动 - 电子相干性的变化。我们的结果表明,细菌叶绿素振动模式与激子能隙之间的共振促进了电子相干性,并支持了当前光合作用能量转移的振动电子模型。

相似文献

1
Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates.
J Phys Chem A. 2016 Mar 10;120(9):1479-87. doi: 10.1021/acs.jpca.5b08366. Epub 2015 Dec 16.
4
Coherent picosecond exciton dynamics in a photosynthetic reaction center.
J Am Chem Soc. 2012 Oct 10;134(40):16484-7. doi: 10.1021/ja3065478. Epub 2012 Oct 1.
5
Towards quantification of vibronic coupling in photosynthetic antenna complexes.
J Chem Phys. 2015 Jun 7;142(21):212446. doi: 10.1063/1.4921324.
6
Vibrational coherence in bacterial reaction centers with genetically modified B-branch pigment composition.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):369-79. doi: 10.1016/j.bbabio.2006.05.025. Epub 2006 May 23.

引用本文的文献

1
Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center.
Sci Adv. 2022 Jan 7;8(1):eabk0953. doi: 10.1126/sciadv.abk0953. Epub 2022 Jan 5.
2
Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis.
Photosynth Res. 2022 Mar;151(3):225-234. doi: 10.1007/s11120-021-00881-9. Epub 2021 Oct 28.
3
DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer.
Chem Sci. 2020 Jul 22;11(32):8546-8557. doi: 10.1039/d0sc01127d.
5
Vibronic Coherence in the Charge Separation Process of the Rhodobacter sphaeroides Reaction Center.
J Phys Chem Lett. 2018 Apr 19;9(8):1827-1832. doi: 10.1021/acs.jpclett.8b00108. Epub 2018 Mar 29.
6
Primary processes in the bacterial reaction center probed by two-dimensional electronic spectroscopy.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3563-3568. doi: 10.1073/pnas.1721927115. Epub 2018 Mar 19.
7
Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11750-11755. doi: 10.1073/pnas.1610554113. Epub 2016 Oct 3.

本文引用的文献

1
Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion.
Nat Phys. 2014 Sep 1;10(9):676-682. doi: 10.1038/nphys3017.
2
Exploiting Structured Environments for Efficient Energy Transfer: The Phonon Antenna Mechanism.
J Phys Chem Lett. 2013 Mar 21;4(6):903-7. doi: 10.1021/jz400058a. Epub 2013 Mar 6.
3
Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics.
J Phys Chem Lett. 2015 Jul 2;6(13):2413-20. doi: 10.1021/acs.jpclett.5b00861. Epub 2015 Jun 10.
4
7
Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.
J Chem Phys. 2014 Nov 14;141(18):185102. doi: 10.1063/1.4901056.
8
Vibronic coherence in oxygenic photosynthesis.
Nat Chem. 2014 Aug;6(8):706-11. doi: 10.1038/nchem.2005. Epub 2014 Jul 13.
9
Dispersion-free continuum two-dimensional electronic spectrometer.
Appl Opt. 2014 Mar 20;53(9):1909-17. doi: 10.1364/AO.53.001909.
10
Unraveling the nature of coherent beatings in chlorosomes.
J Chem Phys. 2014 Mar 21;140(11):115103. doi: 10.1063/1.4868557.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验