Departamento de Química Fundamental, CCEN, UFPE, 50590-470 - Recife, PE, Brazil, Departamento de Química, CCET, UFS, 49100-000 - Aracaju, SE, Brazil, and Departamento de Química, CCEN, UFPB, 58.059-970 - João Pessoa, PB, Brazil.
J Chem Theory Comput. 2007 Jul;3(4):1588-96. doi: 10.1021/ct600326m.
The Sparkle/PM3 model is extended to neodymium(III), promethium(III), and samarium(III) complexes. The unsigned mean error, for all Sparkle/PM3 interatomic distances between the trivalent lanthanide ion and the ligand atoms of the first sphere of coordination, is 0.074 Å for Nd(III); 0.057 Å for Pm(III); and 0.075 Å for Sm(III). These figures are similar to the Sparkle/AM1 ones of 0.076 Å, 0.059 Å, and 0.075 Å, respectively, indicating they are all comparable models. Moreover, their accuracy is similar to what can be obtained by present-day ab initio effective potential calculations on such lanthanide complexes. Hence, the choice of which model to utilize will depend on the assessment of the effect of either AM1 or PM3 on the quantum chemical description of the organic ligands. Finally, we present a preliminary attempt to verify the geometry prediction consistency of Sparkle/PM3. Since lanthanide complexes are usually flexible, we randomly generated 200 different input geometries for the samarium complex QIPQOV which were then fully optimized by Sparkle/PM3. A trend appeared in that, on average, the lower the total energy of the local minima found, the lower the unsigned mean errors, and the higher the accuracy of the model. These preliminary results do indicate that attempting to find, with Sparkle/PM3, a global minimum for the geometry of a given complex, with the understanding that it will tend to be closer to the experimental geometry, appears to be warranted. Therefore, the sparkle model is seemingly a trustworthy semiempirical quantum chemical model for the prediction of lanthanide complexes geometries.
Sparkle/PM3 模型被扩展到钕(III)、镨(III)和钐(III)配合物。未签名的平均误差,对于三价镧系离子与配位第一层配体原子之间的所有 Sparkle/PM3 原子间距离,对于 Nd(III)为 0.074 Å;对于 Pm(III)为 0.057 Å;对于 Sm(III)为 0.075 Å。这些数字与 Sparkle/AM1 的分别为 0.076 Å、0.059 Å和 0.075 Å相似,表明它们都是可比的模型。此外,它们的准确性与目前对这些镧系配合物进行的从头算有效势计算所能获得的准确性相似。因此,选择使用哪种模型将取决于对 AM1 或 PM3 对有机配体量子化学描述的影响的评估。最后,我们初步尝试验证 Sparkle/PM3 的几何预测一致性。由于镧系配合物通常是灵活的,我们随机生成了 200 种不同的输入几何形状用于钐配合物 QIPQOV,然后由 Sparkle/PM3 对其进行完全优化。出现了一种趋势,即平均而言,找到的局部最小值的总能量越低,未签名的平均误差越低,模型的准确性越高。这些初步结果确实表明,尝试使用 Sparkle/PM3 找到给定配合物的几何形状的全局最小值,并且理解它将更接近实验几何形状,似乎是合理的。因此,Sparkle 模型似乎是一种可靠的半经验量子化学模型,可用于预测镧系配合物的几何形状。