Suppr超能文献

神经网络势能面模型:原型示例。

Neural Network Models of Potential Energy Surfaces:  Prototypical Examples.

机构信息

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716.

出版信息

J Chem Theory Comput. 2005 Jan;1(1):14-23. doi: 10.1021/ct049976i.

Abstract

Neural networks can be used generate potential energy hypersurfaces by fitting to a data set of energies at discrete geometries, as might be obtained from ab initio calculations. Prior work has shown that this method can generate accurate fits in complex systems of several dimensions. The present paper explores fundamental properties of neural network potential representations in some simple prototypes of one, two, and three dimensions. Optimal fits to the data are achieved by adjusting the network parameters using an extended Kalman filtering algorithm, which is described in detail. The examples provide insight into the relationships between the form of the function being fit, the amount of data needed for an adequate fit, and the optimal network configuration and number of neurons needed. The quality of the network interpolation is substantially improved if gradients as well as the energy are available for fitting. The fitting algorithm is effective in providing an accurate interpolation of the underlying potential function even when random noise is added to the data used in the fit.

摘要

神经网络可以通过拟合离散几何上的能量数据集来生成势能超曲面,这些数据集可能是从从头算计算中获得的。先前的工作表明,该方法可以在具有几个维度的复杂系统中生成准确的拟合。本文探讨了一维、二维和三维的一些简单原型中神经网络势表示的基本性质。通过使用扩展卡尔曼滤波算法调整网络参数来实现对数据的最佳拟合,该算法在本文中进行了详细描述。这些示例深入了解了拟合函数的形式、充分拟合所需的数据量以及所需的最佳网络配置和神经元数量之间的关系。如果可以使用梯度以及能量来进行拟合,则网络插值的质量会大大提高。即使在拟合中添加随机噪声,拟合算法也可以有效地对基础势函数进行准确的插值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验