Schmidtmann Gunnar, Jennings Ben J, Bell Jason, Kingdom Frederick A A
J Vis. 2015;15(16):6. doi: 10.1167/15.16.6.
Previous studies investigating signal integration in circular Glass patterns have concluded that the information in these patterns is linearly summed across the entire display for detection. Here we test whether an alternative form of summation, probability summation (PS), modeled under the assumptions of Signal Detection Theory (SDT), can be rejected as a model of Glass pattern detection. PS under SDT alone predicts that the exponent β of the Quick- (or Weibull-) fitted psychometric function should decrease with increasing signal area. We measured spatial integration in circular, radial, spiral, and parallel Glass patterns, as well as comparable patterns composed of Gabors instead of dot pairs. We measured the signal-to-noise ratio required for detection as a function of the size of the area containing signal, with the remaining area containing dot-pair or Gabor-orientation noise. Contrary to some previous studies, we found that the strength of summation never reached values close to linear summation for any stimuli. More importantly, the exponent β systematically decreased with signal area, as predicted by PS under SDT. We applied a model for PS under SDT and found that it gave a good account of the data. We conclude that probability summation is the most likely basis for the detection of circular, radial, spiral, and parallel orientation-defined textures.
以往关于圆形格拉斯图案中信号整合的研究得出结论,这些图案中的信息在整个显示屏上进行线性求和以进行检测。在此,我们测试一种替代的求和形式,即概率求和(PS),在信号检测理论(SDT)假设下建模,是否可以被排除作为格拉斯图案检测的模型。仅在SDT下的PS预测,快速(或威布尔)拟合心理测量函数的指数β应随着信号面积的增加而减小。我们测量了圆形、径向、螺旋形和平行格拉斯图案以及由高斯包络而不是点对组成的可比图案中的空间整合。我们测量了检测所需的信噪比作为包含信号区域大小的函数,其余区域包含点对或高斯包络方向噪声。与一些先前的研究相反,我们发现对于任何刺激,求和强度从未达到接近线性求和的值。更重要的是,如SDT下的PS所预测,指数β随着信号面积系统地减小。我们应用了SDT下的PS模型,发现它能很好地解释数据。我们得出结论,概率求和是检测圆形、径向、螺旋形和平行方向定义纹理的最可能基础。