Maavara Taylor, Parsons Christopher T, Ridenour Christine, Stojanovic Severin, Dürr Hans H, Powley Helen R, Van Cappellen Philippe
Ecohydrology Research Group, Water Institute, University of Waterloo, Waterloo, ON, Canada N2L 3G1; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada N2L 3G1
Ecohydrology Research Group, Water Institute, University of Waterloo, Waterloo, ON, Canada N2L 3G1; Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15603-8. doi: 10.1073/pnas.1511797112. Epub 2015 Dec 7.
More than 70,000 large dams have been built worldwide. With growing water stress and demand for energy, this number will continue to increase in the foreseeable future. Damming greatly modifies the ecological functioning of river systems. In particular, dam reservoirs sequester nutrient elements and, hence, reduce downstream transfer of nutrients to floodplains, lakes, wetlands, and coastal marine environments. Here, we quantify the global impact of dams on the riverine fluxes and speciation of the limiting nutrient phosphorus (P), using a mechanistic modeling approach that accounts for the in-reservoir biogeochemical transformations of P. According to the model calculations, the mass of total P (TP) trapped in reservoirs nearly doubled between 1970 and 2000, reaching 42 Gmol y(-1), or 12% of the global river TP load in 2000. Because of the current surge in dam building, we project that by 2030, about 17% of the global river TP load will be sequestered in reservoir sediments. The largest projected increases in TP and reactive P (RP) retention by damming will take place in Asia and South America, especially in the Yangtze, Mekong, and Amazon drainage basins. Despite the large P retention capacity of reservoirs, the export of RP from watersheds will continue to grow unless additional measures are taken to curb anthropogenic P emissions.
全球已建成7万多座大型水坝。随着水资源压力不断增大以及能源需求的增加,在可预见的未来,这一数字还将持续上升。筑坝极大地改变了河流系统的生态功能。特别是,大坝水库会截留营养元素,从而减少营养物质向下游洪泛区、湖泊、湿地和沿海海洋环境的转移。在此,我们使用一种考虑了水库中磷的生物地球化学转化过程的机理模型方法,来量化大坝对河流中限制营养元素磷(P)的通量和形态的全球影响。根据模型计算,1970年至2000年间,水库中截留的总磷(TP)质量几乎翻了一番,达到42 Gmol y(-1),占2000年全球河流TP负荷的12%。由于当前大坝建设的激增,我们预计到2030年,全球河流TP负荷的约17%将被截留在水库沉积物中。预计筑坝导致的TP和活性磷(RP)截留量增加最大的地区将在亚洲和南美洲,尤其是长江、湄公河和亚马逊流域。尽管水库具有很大的磷截留能力,但除非采取额外措施抑制人为磷排放,否则流域中RP的输出量仍将继续增长。