Liao Cheng-Heng, Yao Lili, Xu Ya, Liu Wei-Bing, Zhou Ying, Ye Bang-Ce
Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China;
Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang 832000, China
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15630-5. doi: 10.1073/pnas.1508465112. Epub 2015 Dec 7.
The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea. Deletion of the glnR gene resulted in severe growth retardation under the culture conditions used, with select ABC-transported carbohydrates (maltose, sorbitol, mannitol, cellobiose, trehalose, or mannose) used as the sole carbon source. Furthermore, we found that GlnR-mediated regulation of carbohydrate transport was highly conserved in actinomycetes. These results demonstrate that GlnR serves a role beyond nitrogen metabolism, mediating critical functions in carbon metabolism and crosstalk of nitrogen- and carbon-metabolism pathways in response to the nutritional states of cells. These findings provide insights into the molecular regulation of transport and metabolism of non-PTS carbohydrates and reveal potential applications for the cofermentation of biomass-derived sugars in the production of biofuels and bio-based chemicals.
放线菌中多种碳水化合物的摄取和利用背后的调控机制仍知之甚少。在本研究中,我们表明GlnR(氮代谢的核心调节因子)作为氮代谢的通用调节因子,在控制放线菌中非磷酸转移酶系统(PTS)碳源的运输方面发挥着重要的、此前未知的作用。据观察,在工业生产红霉素的糖多孢红霉菌中,GlnR可以直接与大多数(20个中的13个)碳水化合物ATP结合盒(ABC)转运基因座的启动子相互作用,并能根据氮的可用性激活这些基因的转录。在以特定ABC转运的碳水化合物(麦芽糖、山梨醇、甘露醇、纤维二糖、海藻糖或甘露糖)作为唯一碳源的培养条件下,删除glnR基因会导致严重的生长迟缓。此外,我们发现GlnR介导的碳水化合物运输调控在放线菌中高度保守。这些结果表明,GlnR的作用超出了氮代谢,在碳代谢以及氮和碳代谢途径的相互作用中发挥关键功能,以响应细胞的营养状态。这些发现为非PTS碳水化合物的运输和代谢的分子调控提供了见解,并揭示了生物质衍生糖在生物燃料和生物基化学品生产中的共发酵的潜在应用。