Suppr超能文献

采用三种不同统计分析方法的近红外反射光谱法对羊草品质进行评估。

Evaluation of Leymus chinensis quality using near-infrared reflectance spectroscopy with three different statistical analyses.

作者信息

Chen Jishan, Zhu Ruifen, Xu Ruixuan, Zhang Wenjun, Shen Yue, Zhang Yingjun

机构信息

Department of Grassland Science, China Agricultural University , Beijing , China ; Heilongjiang Academy of Agricultural Science, Institute of Pratacultural Science , Harbin , China.

Heilongjiang Academy of Agricultural Science, Institute of Pratacultural Science , Harbin , China.

出版信息

PeerJ. 2015 Dec 3;3:e1416. doi: 10.7717/peerj.1416. eCollection 2015.

Abstract

Due to a boom in the dairy industry in Northeast China, the hay industry has been developing rapidly. Thus, it is very important to evaluate the hay quality with a rapid and accurate method. In this research, a novel technique that combines near infrared spectroscopy (NIRs) with three different statistical analyses (MLR, PCR and PLS) was used to predict the chemical quality of sheepgrass (Leymus chinensis) in Heilongjiang Province, China including the concentrations of crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF). Firstly, the linear partial least squares regression (PLS) was performed on the spectra and the predictions were compared to those with laboratory-based recorded spectra. Then, the MLR evaluation method for CP has a potential to be used for industry requirements, as it needs less sophisticated and cheaper instrumentation using only a few wavelengths. Results show that in terms of CP, ADF and NDF, (i) the prediction accuracy in terms of CP, ADF and NDF using PLS was obviously improved compared to the PCR algorithm, and comparable or even better than results generated using the MLR algorithm; (ii) the predictions were worse compared to laboratory-based spectra with the MLR algorithmin, and poor predictions were obtained (R2, 0.62, RPD, 0.9) using MLR in terms of NDF; (iii) a satisfactory accuracy with R2 and RPD by PLS method of 0.91, 3.2 for CP, 0.89, 3.1 for ADF and 0.88, 3.0 for NDF, respectively, was obtained. Our results highlight the use of the combined NIRs-PLS method could be applied as a valuable technique to rapidly and accurately evaluate the quality of sheepgrass hay.

摘要

由于中国东北地区乳制品行业的蓬勃发展,干草产业也在迅速发展。因此,采用快速准确的方法评估干草质量非常重要。本研究采用一种将近红外光谱(NIRs)与三种不同统计分析方法(多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS))相结合的新技术,对中国黑龙江省羊草(Leymus chinensis)的化学质量进行预测,包括粗蛋白(CP)、酸性洗涤纤维(ADF)和中性洗涤纤维(NDF)的含量。首先,对光谱进行线性偏最小二乘回归(PLS),并将预测结果与基于实验室记录光谱的预测结果进行比较。然后,CP的MLR评估方法有可能用于工业需求,因为它只需要使用少数波长的不太复杂且成本较低的仪器。结果表明,在CP、ADF和NDF方面,(i)与PCR算法相比,使用PLS对CP、ADF和NDF的预测准确性明显提高,与使用MLR算法产生的结果相当甚至更好;(ii)使用MLR算法时,预测结果比基于实验室的光谱更差,在NDF方面使用MLR获得的预测效果较差(R2为0.62,RPD为0.9);(iii)通过PLS方法分别获得了令人满意的准确性,CP的R2和RPD分别为0.91、3.2,ADF为0.89、3.1,NDF为0.88、3.0。我们的结果突出了联合使用NIRs-PLS方法可作为一种有价值的技术,用于快速准确地评估羊草草干草的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d26/4671155/f14c3512cb35/peerj-03-1416-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验