Suppr超能文献

Pin1 中的保守水合位点揭示了蛋白质中独特的水识别模体。

Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.

机构信息

Departments of Chemistry and ‡Biology and the §Centers for Diagnostics and Therapeutics and ∥Biotechnology and Drug Design, Georgia State University , Atlanta, Georgia 30302-3965, United States.

出版信息

J Chem Inf Model. 2016 Jan 25;56(1):139-47. doi: 10.1021/acs.jcim.5b00560. Epub 2015 Dec 23.

Abstract

Structurally conserved water molecules are important for biomolecular stability, flexibility, and function. X-ray crystallographic studies of Pin1 have resolved a number of water molecules around the enzyme, including two highly conserved water molecules within the protein. The functional role of these localized water molecules remains unknown and unexplored. Pin1 catalyzes cis/trans isomerizations of peptidyl prolyl bonds that are preceded by a phosphorylated serine or threonine residue. Pin1 is involved in many subcellular signaling processes and is a potential therapeutic target for the treatment of several life threatening diseases. Here, we investigate the significance of these structurally conserved water molecules in the catalytic domain of Pin1 using molecular dynamics (MD) simulations, free energy calculations, analysis of X-ray crystal structures, and circular dichroism (CD) experiments. MD simulations and free energy calculations suggest the tighter binding water molecule plays a crucial role in maintaining the integrity and stability of a critical hydrogen-bonding network in the active site. The second water molecule is exchangeable with bulk solvent and is found in a distinctive helix-turn-coil motif. Structural bioinformatics analysis of nonredundant X-ray crystallographic protein structures in the Protein Data Bank (PDB) suggest this motif is present in several other proteins and can act as a water site, akin to the calcium EF hand. CD experiments suggest the isolated motif is in a distorted PII conformation and requires the protein environment to fully form the α-helix-turn-coil motif. This study provides valuable insights into the role of hydration in the structural integrity of Pin1 that can be exploited in protein engineering and drug design.

摘要

结构保守的水分子对于生物分子的稳定性、灵活性和功能至关重要。Pin1 的 X 射线晶体学研究已经解析了酶周围的许多水分子,包括蛋白质内的两个高度保守的水分子。这些局部水分子的功能作用仍然未知且未被探索。Pin1 催化肽基脯氨酸键的顺/反异构化,这些键之前是磷酸化的丝氨酸或苏氨酸残基。Pin1 参与许多细胞内信号转导过程,是治疗几种危及生命疾病的潜在治疗靶点。在这里,我们使用分子动力学 (MD) 模拟、自由能计算、X 射线晶体结构分析和圆二色性 (CD) 实验研究了这些结构保守水分子在 Pin1 催化结构域中的重要性。MD 模拟和自由能计算表明,更紧密结合的水分子在维持活性部位关键氢键网络的完整性和稳定性方面起着至关重要的作用。第二个水分子可与体相溶剂交换,并且存在于独特的螺旋-转角-环模体中。对蛋白质数据库 (PDB) 中无冗余 X 射线晶体结构的结构生物信息学分析表明,该模体存在于其他几种蛋白质中,并且可以充当水结合位点,类似于钙 EF 手。CD 实验表明,孤立的模体处于扭曲的 PII 构象,并且需要蛋白质环境才能完全形成 α-螺旋-转角-环模体。这项研究提供了对 Pin1 结构完整性中水合作用的重要见解,可用于蛋白质工程和药物设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验