Defoort M, Puller V, Bourgeois O, Pistolesi F, Collin E
Université Grenoble Alpes, CNRS Institut NÉEL, BP 166, 38042 Grenoble Cedex 9, France.
Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):050903. doi: 10.1103/PhysRevE.92.050903. Epub 2015 Nov 19.
We report on experimental and theoretical studies of the fluctuation-induced escape time from a metastable state of a nanomechanical Duffing resonator in a cryogenic environment. By tuning in situ the nonlinear coefficient γ we could explore a wide range of the parameter space around the bifurcation point, where the metastable state becomes unstable. We measured in a relaxation process the distribution of the escape times. We have been able to verify its exponential distribution and extract the escape rate Γ. We investigated the scaling of Γ with respect to the distance to the bifurcation point and γ, finding an unprecedented quantitative agreement with the theoretical description of the stochastic problem. Simple power scaling laws turn out to hold in a large region of the parameter space, as anticipated by recent theoretical predictions. These unique findings, implemented in a model dynamical system, are relevant to all systems experiencing underdamped saddle-node bifurcation.
我们报告了在低温环境下纳米机械杜芬谐振器从亚稳态通过涨落诱导逃逸时间的实验和理论研究。通过原位调节非线性系数γ,我们能够探索围绕分岔点的广泛参数空间,在该点亚稳态变得不稳定。我们在弛豫过程中测量了逃逸时间的分布。我们能够验证其指数分布并提取逃逸率Γ。我们研究了Γ相对于到分岔点的距离和γ的标度关系,发现与随机问题的理论描述有前所未有的定量一致性。正如最近理论预测所预期的那样,简单的幂次标度定律在参数空间的很大区域内成立。这些独特的发现应用于一个模型动力系统,与所有经历欠阻尼鞍结分岔的系统相关。