Suppr超能文献

幸存者分布中的普遍性:刻画竞争动态中的赢家。

Universality in survivor distributions: Characterizing the winners of competitive dynamics.

作者信息

Luck J M, Mehta A

机构信息

Institut de Physique Théorique, Université Paris-Saclay, CEA and CNRS, 91191 Gif-sur-Yvette, France.

S. N. Bose National Centre for Basic Sciences, Block JD, Sector 3, Salt Lake, Calcutta 700098, India.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052810. doi: 10.1103/PhysRevE.92.052810. Epub 2015 Nov 23.

Abstract

We investigate the survivor distributions of a spatially extended model of competitive dynamics in different geometries. The model consists of a deterministic dynamical system of individual agents at specified nodes, which might or might not survive the predatory dynamics: all stochasticity is brought in by the initial state. Every such initial state leads to a unique and extended pattern of survivors and nonsurvivors, which is known as an attractor of the dynamics. We show that the number of such attractors grows exponentially with system size, so that their exact characterization is limited to only very small systems. Given this, we construct an analytical approach based on inhomogeneous mean-field theory to calculate survival probabilities for arbitrary networks. This powerful (albeit approximate) approach shows how universality arises in survivor distributions via a key concept-the dynamical fugacity. Remarkably, in the large-mass limit, the survivor probability of a node becomes independent of network geometry and assumes a simple form which depends only on its mass and degree.

摘要

我们研究了不同几何结构中竞争动力学空间扩展模型的存活分布。该模型由处于特定节点的个体主体的确定性动力系统组成,这些主体在捕食动力学中可能存活,也可能无法存活:所有的随机性都由初始状态引入。每一个这样的初始状态都会导致一种独特且扩展的存活者和非存活者模式,这被称为动力学的吸引子。我们表明,此类吸引子的数量随系统规模呈指数增长,因此它们的确切特征仅局限于非常小的系统。鉴于此,我们构建了一种基于非均匀平均场理论的分析方法,用于计算任意网络的存活概率。这种强大的(尽管是近似的)方法展示了普遍性是如何通过一个关键概念——动力学逸度——在存活分布中产生的。值得注意的是,在大质量极限情况下,一个节点的存活概率变得与网络几何结构无关,并呈现出一种仅取决于其质量和度的简单形式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验