École de psychologie, Université d'Ottawa.
Département des sciences de l'activité physique, Université du Québec, à Trois-Rivières.
Psychol Methods. 2016 Mar;21(1):121-35. doi: 10.1037/met0000055. Epub 2015 Dec 14.
Cluster randomized sampling is 1 method for sampling a population. It requires recruiting subgroups of participants from the population of interest (e.g., whole classes from schools) instead of individuals solicited independently. Here, we demonstrate how clusters affect the standard error of the mean. The presence of clusters influences 2 quantities, the variance of the means and the expected variance. Ignoring clustering produces spurious statistical significance and reduces statistical power when effect sizes are moderate to large. Here, we propose a correction factor. It can be used to estimate standard errors and confidence intervals of the mean under cluster randomized sampling. This correction factor is easy to integrate into regular tests of means and effect sizes. It can also be used to determine sample size needed to reach a prespecified power. Finally, this approach is an easy-to-use alternative to linear mixed modeling and hierarchical linear modeling when there are only 2 levels and no covariates.
整群随机抽样是一种抽样方法。它要求从感兴趣的人群中招募参与者的亚组(例如,来自学校的整个班级),而不是独立征集个人。在这里,我们展示了集群如何影响平均值的标准误差。集群的存在会影响两个数量,即平均值的方差和预期方差。忽略聚类会产生虚假的统计显著性,并在效应大小为中等至大小时降低统计功效。在这里,我们提出了一个修正因子。它可以用于估计在整群随机抽样下平均值的标准误差和置信区间。该修正因子可以很容易地集成到常规的均值和效应量检验中。它还可用于确定达到预设功效所需的样本量。最后,当只有 2 个水平且没有协变量时,这种方法是线性混合建模和层次线性建模的一种易于使用的替代方法。