Suppr超能文献

在化学成分明确的条件下,基于非整合型游离质粒将人羊水干细胞重编程为诱导多能干细胞

Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

作者信息

Slamecka Jaroslav, Salimova Lilia, McClellan Steven, van Kelle Mathieu, Kehl Debora, Laurini Javier, Cinelli Paolo, Owen Laurie, Hoerstrup Simon P, Weber Benedikt

机构信息

a Swiss Center for Regenerative Medicine, University and University Hospital of Zurich , Zurich , Switzerland.

b Division of Surgical Research, University Hospital Zurich , Zurich , Switzerland.

出版信息

Cell Cycle. 2016;15(2):234-49. doi: 10.1080/15384101.2015.1121332.

Abstract

Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

摘要

羊水干细胞(AFSC)是胎儿和儿科细胞疗法中一种颇具吸引力的潜在细胞来源。然而,将它们重编程为多能性会使其对衰老具有抗性、增殖率更高且具有无限分化潜能。观察到AFSC能快速且高效地重新获得多能性,再加上其易于获取,这使其成为重编程的理想细胞来源。重编程过程以及由此产生的诱导多能干细胞(iPSC)表观基因组可能会受益于AFSC的未分化特性。源自AFSC的iPSC在疾病模型构建中也具有潜力,比如唐氏综合征或β地中海贫血。以往涉及AFSC重编程的实验很大程度上依赖于整合载体转基因递送以及含未定义血清、依赖饲养层的培养。在此,我们描述了基于非整合型oriP/EBNA-1附加体质粒将AFSC重编程为iPSC,并在完全化学成分明确的无动物源条件下培养,该条件以玻连蛋白包被和E8培养基为代表,我们发现这个系统特别适合此用途。所获得的AF-iPSC系均匀表达一组多能性标志物Oct3/4、Nanog、Sox2、SSEA-1、SSEA-4、TRA-1-60、TRA-1-81,呈现出人类始发态多能干细胞的典型模式。此外,这些细胞形成了畸胎瘤,并通过PluriTest(一种基于全局表达微阵列的计算机模拟多能性检测方法)被判定为具有多能性。然而,我们发现PluriTest评分处于临界状态,表明在特定条件下存在独特的多能性特征。鉴于iPSC技术未来潜在的临床转化,非整合型重编程和化学成分明确的培养更易被接受。

相似文献

3
Nuclear reprogramming with a non-integrating human RNA virus.
Stem Cell Res Ther. 2015 Mar 26;6(1):48. doi: 10.1186/s13287-015-0035-z.
4
Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.
Stem Cell Rev Rep. 2016 Feb;12(1):73-89. doi: 10.1007/s12015-015-9620-x.
7
Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach.
Mol Ther. 2012 Oct;20(10):1953-67. doi: 10.1038/mt.2012.117. Epub 2012 Jul 3.
9
Efficient Reprogramming of Canine Peripheral Blood Mononuclear Cells into Induced Pluripotent Stem Cells.
Stem Cells Dev. 2021 Jan 15;30(2):79-90. doi: 10.1089/scd.2020.0084. Epub 2020 Dec 24.
10
Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells.
PLoS One. 2017 May 17;12(5):e0177824. doi: 10.1371/journal.pone.0177824. eCollection 2017.

引用本文的文献

1
Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors.
Stem Cell Rev Rep. 2023 Nov;19(8):2557-2575. doi: 10.1007/s12015-023-10633-y. Epub 2023 Sep 27.
2
Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine.
Curr Med Chem. 2024;31(13):1646-1690. doi: 10.2174/0929867330666230503144619.
4
Current status and future prospects of patient-derived induced pluripotent stem cells.
Hum Cell. 2021 Nov;34(6):1601-1616. doi: 10.1007/s13577-021-00592-2. Epub 2021 Aug 10.
5
Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment.
Front Neurosci. 2021 Jan 21;14:617377. doi: 10.3389/fnins.2020.617377. eCollection 2020.
6
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine.
Stem Cell Rev Rep. 2021 Jun;17(3):748-776. doi: 10.1007/s12015-020-10061-2. Epub 2020 Oct 23.
7
Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis.
NPJ Regen Med. 2020 Sep 11;5:15. doi: 10.1038/s41536-020-00100-4. eCollection 2020.
8
Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications.
Cell Transplant. 2019 Dec;28(1_suppl):112S-131S. doi: 10.1177/0963689719886534. Epub 2019 Nov 14.
9
The Impact of Epigenetic Signatures on Amniotic Fluid Stem Cell Fate.
Stem Cells Int. 2018 Nov 25;2018:4274518. doi: 10.1155/2018/4274518. eCollection 2018.
10
Cardiac Restoration Stemming From the Placenta Tree: Insights From Fetal and Perinatal Cell Biology.
Front Physiol. 2018 Apr 11;9:385. doi: 10.3389/fphys.2018.00385. eCollection 2018.

本文引用的文献

2
Resetting transcription factor control circuitry toward ground-state pluripotency in human.
Cell. 2014 Sep 11;158(6):1254-1269. doi: 10.1016/j.cell.2014.08.029.
3
Cancer: pathological nuclear reprogramming?
Nat Rev Cancer. 2014 Aug;14(8):568-73. doi: 10.1038/nrc3781. Epub 2014 Jul 17.
4
Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy.
Stem Cells Dev. 2014 Nov 1;23(21):2613-25. doi: 10.1089/scd.2014.0110. Epub 2014 Aug 18.
5
Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based culture conditions.
Biomaterials. 2014 Sep;35(29):8330-8. doi: 10.1016/j.biomaterials.2014.05.059. Epub 2014 Jun 30.
6
Molecular control of induced pluripotency.
Cell Stem Cell. 2014 Jun 5;14(6):720-34. doi: 10.1016/j.stem.2014.05.002.
8
Characterization of pluripotent stem cells.
Nat Protoc. 2013 Feb;8(2):223-53. doi: 10.1038/nprot.2012.154. Epub 2013 Jan 10.
9
Epigenetic analysis and suitability of amniotic fluid stem cells for research and therapeutic purposes.
Stem Cells Dev. 2013 May 1;22(9):1319-28. doi: 10.1089/scd.2012.0371. Epub 2013 Feb 12.
10
Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective.
Cell Res. 2013 Jan;23(1):49-69. doi: 10.1038/cr.2012.175. Epub 2012 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验