Heussner Kirsten, Ruebner Matthias, Huebner Hanna, Rascher Wolfgang, Menendez-Castro Carlos, Hartner Andrea, Fahlbusch Fabian B, Rauh Manfred
Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
Department of Gynecology and Obstetrics, University of Erlangen-Nürnberg, Erlangen, Germany.
Placenta. 2016 Jan;37:79-84. doi: 10.1016/j.placenta.2015.11.009. Epub 2015 Nov 25.
Glucocorticoid-induced fetal programming has been associated with negative metabolic and cardiovascular sequelae in the adult. The placental enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2) shields the fetus from maternal glucocorticoid excess by catalyzing the conversion of these hormones into biologically inactive derivatives. In vivo experiments addressing placental barrier function are mostly conducted in rodents. Therefore we set out to characterize species-specific differences of rat and human placental 11β-HSD2 steroid turnover, introducing Liquid Chromatography Tandem Mass-Spectrometry (LC-MS/MS) as a tool for rat tissue analysis.
Using LC-MS/MS we determined corticotropin-releasing hormone (CRH), cortisol (F), cortisone (E), corticosterone (B) and 11-dehydrocorticosterone (A) in human and rat placenta at term and measured the enzymatic 11β-HSD glucocorticoid conversion-rates in placental microsomes of both species. In parallel, further glucocorticoid derivatives and sex steroids were determined in the same placental samples.
In contrast to the human placenta, we did not detect CRH in the rat placenta. While cortisol (F) and cortisone (E) were exclusively present in human term placenta (E/F-ratio >1), rat placenta showed significant levels of corticosterone (B) and 11-dehydrocorticosterone (A), with an A/B-ratio <1. In line with these species-specific findings, human placenta showed a prominent 11β-HSD2 activity, while in rat placenta higher 11β-HSD1 glucocorticoid turnover rates were determined.
Placental steroid metabolism of human and rat shows relevant species-specific differences, especially regarding the barrier function of 11β-HSD2 at term. The exclusive expression of CRH in the human placenta further points to relevant differences in the regulation of parturition in rats. Consideration of these findings is warranted when transferring results from rodent placental glucocorticoid metabolism into humans.
糖皮质激素诱导的胎儿编程与成人期负面的代谢和心血管后遗症有关。胎盘酶11β-羟基类固醇脱氢酶2型(11β-HSD2)通过将这些激素转化为生物活性较低的衍生物,保护胎儿免受母体过量糖皮质激素的影响。针对胎盘屏障功能的体内实验大多在啮齿动物中进行。因此,我们着手研究大鼠和人类胎盘11β-HSD2类固醇代谢的物种特异性差异,引入液相色谱串联质谱法(LC-MS/MS)作为大鼠组织分析工具。
使用LC-MS/MS测定足月时人类和大鼠胎盘促肾上腺皮质激素释放激素(CRH)、皮质醇(F)、可的松(E)、皮质酮(B)和11-脱氢皮质酮(A),并测量两种物种胎盘微粒体中11β-HSD糖皮质激素转化率。同时,在相同的胎盘样本中测定其他糖皮质激素衍生物和性类固醇。
与人类胎盘不同,我们在大鼠胎盘中未检测到CRH。虽然皮质醇(F)和可的松(E)仅存在于足月人类胎盘中(E/F比值>1),但大鼠胎盘显示出显著水平的皮质酮(B)和11-脱氢皮质酮(A),A/B比值<1。与这些物种特异性结果一致,人类胎盘显示出显著的11β-HSD2活性,而在大鼠胎盘中测定到较高的11β-HSD1糖皮质激素转化率。
人类和大鼠的胎盘类固醇代谢存在显著的物种特异性差异,尤其是在足月时11β-HSD2的屏障功能方面。CRH在人类胎盘中的独特表达进一步表明大鼠分娩调节存在相关差异。将啮齿动物胎盘糖皮质激素代谢结果应用于人类时,有必要考虑这些发现。