Suppr超能文献

通过α-二氟甲基鸟氨酸靶向鸟氨酸脱羧酶可通过损害髓源性抑制细胞来抑制肿瘤生长。

Targeting Ornithine Decarboxylase by α-Difluoromethylornithine Inhibits Tumor Growth by Impairing Myeloid-Derived Suppressor Cells.

作者信息

Ye Cong, Geng Zhe, Dominguez Donye, Chen Siqi, Fan Jie, Qin Lei, Long Alan, Zhang Yi, Kuzel Timothy M, Zhang Bin

机构信息

Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; and.

Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; Hubei Maternity and Child Health Hospital, Wuhan 430070, China.

出版信息

J Immunol. 2016 Jan 15;196(2):915-23. doi: 10.4049/jimmunol.1500729. Epub 2015 Dec 9.

Abstract

α-Difluoromethylornithine (DFMO) is currently used in chemopreventive regimens primarily for its conventional direct anticarcinogenesic activity. However, little is known about the effect of ornithine decarboxylase (ODC) inhibition by DFMO on antitumor immune responses. We showed in this study that pharmacologic blockade of ODC by DFMO inhibited tumor growth in intact immunocompetent mice, but abrogated in the immunodeficient Rag1(-/-) mice, suggesting that antitumor effect of DFMO is dependent on the induction of adaptive antitumor T cell immune responses. Depletion of CD8(+) T cells impeded the tumor-inhibiting advantage of DFMO. Moreover, DFMO treatment enhanced antitumor CD8(+) T cell infiltration and IFN-γ production and augmented the efficacy of adoptive T cell therapy. Importantly, DFMO impaired Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs) suppressive activity through at least two mechanisms, including reducing arginase expression and activity and inhibiting the CD39/CD73-mediated pathway. MDSCs were one primary cellular target of DFMO as indicated by both adoptive transfer and MDSC-depletion analyses. Our findings establish a new role of ODC inhibition by DFMO as a viable and effective immunological adjunct in effective cancer treatment, thereby adding to the growing list of chemoimmunotherapeutic applications of these agents.

摘要

α-二氟甲基鸟氨酸(DFMO)目前主要因其传统的直接抗癌活性而用于化学预防方案。然而,关于DFMO抑制鸟氨酸脱羧酶(ODC)对抗肿瘤免疫反应的影响,人们了解甚少。我们在本研究中表明,DFMO对ODC的药理学阻断在完整的免疫 competent 小鼠中抑制肿瘤生长,但在免疫缺陷的Rag1(-/-)小鼠中消除了这种抑制作用,这表明DFMO的抗肿瘤作用依赖于适应性抗肿瘤T细胞免疫反应的诱导。CD8(+) T细胞的耗竭阻碍了DFMO的肿瘤抑制优势。此外,DFMO治疗增强了抗肿瘤CD8(+) T细胞浸润和IFN-γ产生,并增强了过继性T细胞疗法的疗效。重要的是,DFMO通过至少两种机制损害了Gr1(+)CD11b(+)髓系来源的抑制性细胞(MDSCs)的抑制活性,包括降低精氨酸酶表达和活性以及抑制CD39/CD73介导的途径。过继性转移和MDSC耗竭分析均表明,MDSCs是DFMO的一个主要细胞靶点。我们的研究结果确立了DFMO抑制ODC作为有效癌症治疗中一种可行且有效的免疫辅助手段的新作用,从而增加了这些药物在化学免疫治疗应用中的不断增长的列表。

相似文献

2
Alpha-difluoromethylornithine (DFMO) as a potent arginase activity inhibitor in human colon carcinoma cells.
Biochem Pharmacol. 1998 Apr 15;55(8):1241-5. doi: 10.1016/s0006-2952(97)00572-8.
3
Eflornithine (DFMO) prevents progression of pancreatic cancer by modulating ornithine decarboxylase signaling.
Cancer Prev Res (Phila). 2014 Dec;7(12):1198-209. doi: 10.1158/1940-6207.CAPR-14-0176. Epub 2014 Sep 23.
4
α-Difluoromethylornithine suppresses inflammatory arthritis by impairing myeloid-derived suppressor cells.
Int Immunopharmacol. 2019 Jun;71:251-258. doi: 10.1016/j.intimp.2019.03.040. Epub 2019 Mar 28.
5
Inhibition of human ornithine decarboxylase activity by enantiomers of difluoromethylornithine.
Biochem J. 2003 Oct 15;375(Pt 2):465-70. doi: 10.1042/BJ20030382.

引用本文的文献

1
Metabolic regulation of myeloid-derived suppressor cells in tumor immune microenvironment: targets and therapeutic strategies.
Theranostics. 2025 Jan 13;15(6):2159-2184. doi: 10.7150/thno.105276. eCollection 2025.
2
Arginine metabolism in myeloid cells in health and disease.
Semin Immunopathol. 2025 Jan 25;47(1):11. doi: 10.1007/s00281-025-01038-9.
3
The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis.
Int J Mol Sci. 2024 Jul 26;25(15):8173. doi: 10.3390/ijms25158173.
4
Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer.
J Clin Invest. 2024 Jan 16;134(2):e175445. doi: 10.1172/JCI175445.
6
VISTA promotes the metabolism and differentiation of myeloid-derived suppressor cells by STAT3 and polyamine-dependent mechanisms.
Cell Rep. 2024 Jan 23;43(1):113661. doi: 10.1016/j.celrep.2023.113661. Epub 2024 Jan 3.
7
Microbial metabolites are involved in tumorigenesis and development by regulating immune responses.
Front Immunol. 2023 Dec 19;14:1290414. doi: 10.3389/fimmu.2023.1290414. eCollection 2023.
8
Metabolic control of cancer metastasis: role of amino acids at secondary organ sites.
Oncogene. 2023 Nov;42(47):3447-3456. doi: 10.1038/s41388-023-02868-3. Epub 2023 Oct 18.
9
Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond.
Front Immunol. 2023 Mar 17;14:1157537. doi: 10.3389/fimmu.2023.1157537. eCollection 2023.
10
The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment.
Front Immunol. 2022 Sep 2;13:912279. doi: 10.3389/fimmu.2022.912279. eCollection 2022.

本文引用的文献

1
Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells.
Curr Opin Immunol. 2015 Apr;33:120-5. doi: 10.1016/j.coi.2015.02.006. Epub 2015 Feb 27.
2
Host miR155 promotes tumor growth through a myeloid-derived suppressor cell-dependent mechanism.
Cancer Res. 2015 Feb 1;75(3):519-31. doi: 10.1158/0008-5472.CAN-14-2331. Epub 2014 Dec 10.
3
Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment.
Cancer Immunol Res. 2014 Mar;2(3):274-85. doi: 10.1158/2326-6066.CIR-13-0120-T. Epub 2013 Oct 7.
8
Melanoma-induced immunosuppression and its neutralization.
Semin Cancer Biol. 2012 Aug;22(4):319-26. doi: 10.1016/j.semcancer.2012.02.003. Epub 2012 Feb 13.
9
Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients.
Cancer Immunol Immunother. 2012 Feb;61(2):255-263. doi: 10.1007/s00262-011-1161-9. Epub 2011 Nov 27.
10
Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells.
J Immunol. 2011 Dec 1;187(11):6120-9. doi: 10.4049/jimmunol.1101225. Epub 2011 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验