Suppr超能文献

儿童期因ACAD9突变导致的心脏肥大发病率高且临床结果各异。

High incidence and variable clinical outcome of cardiac hypertrophy due to ACAD9 mutations in childhood.

作者信息

Collet Marie, Assouline Zahra, Bonnet Damien, Rio Marlène, Iserin Franck, Sidi Daniel, Goldenberg Alice, Lardennois Caroline, Metodiev Metodi Dimitrov, Haberberger Birgit, Haack Tobias, Munnich Arnold, Prokisch Holger, Rötig Agnès

机构信息

Departments of Pediatric, Cardiology and Genetics and INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants-Malades, Paris, France.

Unité de Génétique Clinique, Department of Neonatal Medicine - Neuropediatrics and Functional Education, CHU de Rouen, Hôpital Charles Nicolle, Rouen, France.

出版信息

Eur J Hum Genet. 2016 Aug;24(8):1112-6. doi: 10.1038/ejhg.2015.264. Epub 2015 Dec 16.

Abstract

Acyl-CoA dehydrogenase family, member 9 (ACAD9) mutation is a frequent, usually fatal cause of early-onset cardiac hypertrophy and mitochondrial respiratory chain complex I deficiency in early childhood. We retrospectively studied a series of 20 unrelated children with cardiac hypertrophy and isolated complex I deficiency and identified compound heterozygosity for missense, splice site or frame shift ACAD9 variants in 8/20 patients (40%). Age at onset ranged from neonatal period to 9 years and 5/8 died in infancy. Heart transplantation was possible in 3/8. Two of them survived and one additional patient improved spontaneously. Importantly, the surviving patients later developed delayed-onset neurologic or muscular symptoms, namely cognitive impairment, seizures, muscle weakness and exercise intolerance. Other organ involvement included proximal tubulopathy, renal failure, secondary ovarian failure and optic atrophy. We conclude that ACAD9 mutation is the most frequent cause of cardiac hypertrophy and isolated complex I deficiency. Heart transplantation in children surviving neonatal period should be considered with caution, as delayed-onset muscle and brain involvement of various severity may occur, even if absent prior to transplantation.

摘要

酰基辅酶A脱氢酶家族成员9(ACAD9)突变是儿童早期发生心脏肥大和线粒体呼吸链复合体I缺乏的常见且通常致命的原因。我们回顾性研究了一系列20例无亲缘关系的心脏肥大且孤立性复合体I缺乏的儿童,在8/20例患者(40%)中鉴定出ACAD9错义、剪接位点或移码变异的复合杂合性。发病年龄从新生儿期到9岁,8例中有5例在婴儿期死亡。8例中有3例可行心脏移植。其中2例存活,另有1例患者自发改善。重要的是,存活患者后来出现迟发性神经或肌肉症状,即认知障碍、癫痫发作、肌肉无力和运动不耐受。其他器官受累包括近端肾小管病、肾衰竭、继发性卵巢功能衰竭和视神经萎缩。我们得出结论,ACAD9突变是心脏肥大和孤立性复合体I缺乏最常见的原因。对于新生儿期存活的儿童进行心脏移植应谨慎考虑,因为即使在移植前不存在,也可能发生各种严重程度的迟发性肌肉和脑受累。

相似文献

1
High incidence and variable clinical outcome of cardiac hypertrophy due to ACAD9 mutations in childhood.
Eur J Hum Genet. 2016 Aug;24(8):1112-6. doi: 10.1038/ejhg.2015.264. Epub 2015 Dec 16.
3
Assembly defects of multiple respiratory chain complexes in a child with cardiac hypertrophy associated with a novel ACAD9 mutation.
Mol Genet Metab. 2017 Jul;121(3):224-226. doi: 10.1016/j.ymgme.2017.05.002. Epub 2017 May 4.
5
Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients.
Mol Genet Metab. 2016 Jul;118(3):185-189. doi: 10.1016/j.ymgme.2016.05.005. Epub 2016 May 13.
7
Optic neuropathy linked to ACAD9 pathogenic variants: A potentially riboflavin-responsive disorder?
Mitochondrion. 2021 Jul;59:169-174. doi: 10.1016/j.mito.2021.05.002. Epub 2021 May 20.
8
Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency.
Nat Genet. 2010 Dec;42(12):1131-4. doi: 10.1038/ng.706. Epub 2010 Nov 7.
10
Severe defect in mitochondrial complex I assembly with mitochondrial DNA deletions in ACAD9-deficient mild myopathy.
Muscle Nerve. 2017 Jun;55(6):919-922. doi: 10.1002/mus.25262. Epub 2017 Mar 26.

引用本文的文献

2
Oxidative stress biomarkers in fetal growth restriction: a systematic review and meta-analysis.
Arch Gynecol Obstet. 2025 Oct;312(4):1063-1084. doi: 10.1007/s00404-025-08133-0. Epub 2025 Jul 30.
4
ACAD9 treatment with bezafibrate and nicotinamide riboside temporarily stabilizes cardiomyopathy and lactic acidosis.
Mitochondrion. 2024 Sep;78:101905. doi: 10.1016/j.mito.2024.101905. Epub 2024 May 24.
5
6
Clinical Reasoning: A 14-Year-Old Girl With Reversible Peripheral Neuropathy and Encephalopathy.
Neurology. 2023 Aug 8;101(6):e665-e671. doi: 10.1212/WNL.0000000000207270. Epub 2023 Apr 19.
7
Severe Antenatal Hypertrophic Cardiomyopathy Secondary to -Related Mitochondrial Complex I Deficiency.
Mol Syndromol. 2023 Apr;14(2):101-108. doi: 10.1159/000526022. Epub 2022 Oct 21.
9
Successful pregnancy in a patient with mitochondrial cardiomyopathy due to ACAD9 deficiency.
JIMD Rep. 2020 Sep 21;56(1):9-13. doi: 10.1002/jmd2.12157. eCollection 2020 Nov.
10

本文引用的文献

2
Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA.
Am J Hum Genet. 2012 Dec 7;91(6):1144-9. doi: 10.1016/j.ajhg.2012.10.019. Epub 2012 Nov 21.
3
Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing.
J Med Genet. 2012 Apr;49(4):277-83. doi: 10.1136/jmedgenet-2012-100846.
4
Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing.
Sci Transl Med. 2012 Jan 25;4(118):118ra10. doi: 10.1126/scitranslmed.3003310.
5
Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency.
Nat Genet. 2010 Dec;42(12):1131-4. doi: 10.1038/ng.706. Epub 2010 Nov 7.
7
Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I.
Cell Metab. 2010 Sep 8;12(3):283-94. doi: 10.1016/j.cmet.2010.08.002.
8
Long-term survival of neonatal mitochondrial complex III deficiency associated with a novel BCS1L gene mutation.
Mol Genet Metab. 2010 Aug;100(4):345-8. doi: 10.1016/j.ymgme.2010.04.010. Epub 2010 Apr 24.
9
Biochemical and molecular investigations in respiratory chain deficiencies.
Clin Chim Acta. 1994 Jul;228(1):35-51. doi: 10.1016/0009-8981(94)90055-8.
10
Riboflavin-responsive complex I deficiency.
Biochim Biophys Acta. 1995 May 24;1271(1):75-83. doi: 10.1016/0925-4439(95)00013-t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验