Departament de Química Física, Universitat de Barcelona , Martí i Franquès 1, 08028 Barcelona, Spain.
Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 15-21, 08028 Barcelona, Spain.
Nano Lett. 2016 Jan 13;16(1):218-26. doi: 10.1021/acs.nanolett.5b03571. Epub 2015 Dec 23.
Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.
控制纳米尺度电子设备中电子的自旋是最有前途的课题之一,旨在开发具有快速和高密度信息存储能力的设备。由磁性分子与金属表面之间的相互作用或反之亦然产生的界面磁性或 spinterface 已成为创建具有新颖功能的纳米尺度分子器件的关键成分。在这里,我们展示了一种单分子线,通过在环境条件下(在液体池中的室温下)控制自旋相关输运,显示出大(> 10000%)的电导开关。该分子线是通过在有机液体介质中将单个自旋交叉 Fe(II) 配合物捕获在一个 Au 电极和一个铁磁 Ni 电极之间而构建的。当电子从 Au 电极流向α-up 或β-down 自旋极化的 Ni 电极时,测量到单分子电导的大变化(> 100 倍)。我们的计算表明,流过这种界面的电流似乎是强烈自旋极化的,从而导致观察到单分子线电导的开关。在单分子线中观察到如此高的自旋相关电导开关为在室温下设计和控制纳米尺度分子器件中的自旋极化输运开辟了新的途径。