Sriwastava Brijesh K, Basu Subhadip, Maulik Ujjwal
IEEE/ACM Trans Comput Biol Bioinform. 2015 Nov-Dec;12(6):1394-404. doi: 10.1109/TCBB.2015.2401018.
Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.
预测参与蛋白质-蛋白质相互作用(PPI)的残基有助于确定哪些氨基酸位于界面处。在本文中,我们表明,对于特定伴侣的PPI界面预测问题,使用定制设计的模糊隶属函数可以进一步提高经典支持向量机(SVM)算法的性能。我们在人类、大肠杆菌和酿酒酵母三种不同模型蛋白质组的PPI数据库上评估了经典SVM和模糊SVM(F-SVM)的性能,并计算了所开发的F-SVM相对于经典SVM算法的统计显著性。我们还将我们的性能与该领域现有的最先进模糊方法进行了比较,观察到性能有显著提升。为了预测蛋白质复合物中的相互作用位点,我们使用了氨基酸的局部组成及其物理化学特性,其中基于F-SVM的预测方法利用了每对序列片段的隶属函数。在10折交叉验证实验中,上述生物体测试样本上F-SVM的平均性能(ROC曲线下面积)分别为77.07%、78.39%和74.91%。独立测试集上的性能分别为72.09%、73.24%和82.74%。该软件可从http://code.google.com/p/cmater-bioinfo免费下载。