Suppr超能文献

聚氯乙烯的热降解:综述

Thermal degradation of PVC: A review.

作者信息

Yu Jie, Sun Lushi, Ma Chuan, Qiao Yu, Yao Hong

机构信息

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, China.

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074 Wuhan, Hubei, China.

出版信息

Waste Manag. 2016 Feb;48:300-314. doi: 10.1016/j.wasman.2015.11.041. Epub 2015 Dec 10.

Abstract

This review summarized various chemical recycling methods for PVC, such as pyrolysis, catalytic dechlorination and hydrothermal treatment, with a view to solving the problem of energy crisis and the impact of environmental degradation of PVC. Emphasis was paid on the recent progress on the pyrolysis of PVC, including co-pyrolysis of PVC with biomass/coal and other plastics, catalytic dechlorination of raw PVC or Cl-containing oil and hydrothermal treatment using subcritical and supercritical water. Understanding the advantage and disadvantage of these treatment methods can be beneficial for treating PVC properly. The dehydrochlorination of PVC mainly happed at low temperature of 250-320°C. The process of PVC dehydrochlorination can catalyze and accelerate the biomass pyrolysis. The intermediates from dehydrochlorination stage of PVC can increase char yield of co-pyrolysis of PVC with PP/PE/PS. For the catalytic degradation and dechlorination of PVC, metal oxides catalysts mainly acted as adsorbents for the evolved HCl or as inhibitors of HCl formation depending on their basicity, while zeolites and noble metal catalysts can produce lighter oil, depending the total number of acid sites and the number of accessible acidic sites. For hydrothermal treatment, PVC decomposed through three stages. In the first region (T<250°C), PVC went through dehydrochlorination to form polyene; in the second region (250°C<T<350°C), polyene decomposed to low-molecular weight compounds; in the third region (350°C<T), polyene further decomposed into a large amount of low-molecular weight compounds.

摘要

本综述总结了聚氯乙烯(PVC)的各种化学回收方法,如热解、催化脱氯和水热处理,旨在解决能源危机问题以及PVC环境降解带来的影响。重点介绍了PVC热解的最新进展,包括PVC与生物质/煤及其他塑料的共热解、原生PVC或含氯油的催化脱氯以及使用亚临界和超临界水的水热处理。了解这些处理方法的优缺点有助于妥善处理PVC。PVC的脱氯化氢反应主要发生在250-320°C的低温下。PVC的脱氯化氢过程可催化并加速生物质热解。PVC脱氯化氢阶段的中间产物可提高PVC与PP/PE/PS共热解的焦炭产率。对于PVC的催化降解和脱氯,金属氧化物催化剂主要根据其碱性作为逸出HCl的吸附剂或HCl形成的抑制剂,而沸石和贵金属催化剂可根据酸位总数和可及酸性位数量生成轻质油。对于水热处理,PVC通过三个阶段分解。在第一区域(T<250°C),PVC进行脱氯化氢反应形成多烯;在第二区域(250°C<T<350°C),多烯分解为低分子量化合物;在第三区域(350°C<T),多烯进一步分解为大量低分子量化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验