Lin Lin, Yang Chengfeng, Ma Maode
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China.
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798.
Sensors (Basel). 2015 Dec 7;15(12):30827-38. doi: 10.3390/s151229830.
Recent advances in nanotechnology, electronic technology and biology have enabled the development of bio-inspired nanoscale sensors. The cooperation among the bionanosensors in a network is envisioned to perform complex tasks. Clock synchronization is essential to establish diffusion-based distributed cooperation in the bionanosensor networks. This paper proposes a maximum-likelihood estimator of the clock offset for the clock synchronization among molecular bionanosensors. The unique properties of diffusion-based molecular communication are described. Based on the inverse Gaussian distribution of the molecular propagation delay, a two-way message exchange mechanism for clock synchronization is proposed. The maximum-likelihood estimator of the clock offset is derived. The convergence and the bias of the estimator are analyzed. The simulation results show that the proposed estimator is effective for the offset compensation required for clock synchronization. This work paves the way for the cooperation of nanomachines in diffusion-based bionanosensor networks.
纳米技术、电子技术和生物学的最新进展推动了受生物启发的纳米级传感器的发展。设想网络中的生物纳米传感器之间的协作能够执行复杂任务。时钟同步对于在生物纳米传感器网络中建立基于扩散的分布式协作至关重要。本文提出了一种用于分子生物纳米传感器之间时钟同步的时钟偏移最大似然估计器。描述了基于扩散的分子通信的独特特性。基于分子传播延迟的逆高斯分布,提出了一种用于时钟同步的双向消息交换机制。推导了时钟偏移的最大似然估计器。分析了估计器的收敛性和偏差。仿真结果表明,所提出的估计器对于时钟同步所需的偏移补偿是有效的。这项工作为基于扩散的生物纳米传感器网络中的纳米机器协作铺平了道路。