Suppr超能文献

蛋白质-蛋白质相互作用的可逆荧光报告分子的结构导向设计。

Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions.

作者信息

To Tsz-Leung, Zhang Qiang, Shu Xiaokun

机构信息

Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California.

Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California.

出版信息

Protein Sci. 2016 Mar;25(3):748-53. doi: 10.1002/pro.2866. Epub 2016 Jan 9.

Abstract

A reversible green fluorogenic protein-fragment complementation assay was developed based on the crystal structure of UnaG, a recently discovered fluorescent protein. In living mammalian cells, the nonfluorescent fragments complemented and rapidly became fluorescent upon rapamycin-induced FKBP and Frb protein interaction, and lost fluorescence when the protein interaction was inhibited. This reversible fluorogenic reporter, named uPPI [UnaG-based protein-protein interaction (PPI) reporter], uses bilirubin (BR) as the chromophore and requires no exogenous cofactor. BR is an endogenous molecule in mammalian cells and is not fluorescent by itself. uPPI may have many potential applications in visualizing spatiotemporal dynamics of PPIs.

摘要

基于最近发现的荧光蛋白UnaG的晶体结构,开发了一种可逆的绿色荧光蛋白片段互补检测方法。在活的哺乳动物细胞中,非荧光片段互补,并在雷帕霉素诱导的FKBP和Frb蛋白相互作用时迅速变为荧光,而当蛋白相互作用被抑制时则失去荧光。这种可逆的荧光报告基因,名为uPPI [基于UnaG的蛋白质-蛋白质相互作用(PPI)报告基因],使用胆红素(BR)作为发色团,不需要外源辅因子。BR是哺乳动物细胞中的内源性分子,其本身不发荧光。uPPI在可视化PPI的时空动态方面可能有许多潜在应用。

相似文献

1
Structure-guided design of a reversible fluorogenic reporter of protein-protein interactions.
Protein Sci. 2016 Mar;25(3):748-53. doi: 10.1002/pro.2866. Epub 2016 Jan 9.
2
A dual-ligand-modulable fluorescent protein based on UnaG and calmodulin.
Biochem Biophys Res Commun. 2018 Feb 12;496(3):872-879. doi: 10.1016/j.bbrc.2018.01.134. Epub 2018 Feb 1.
4
Two Distinct Fluorescence States of the Ligand-Induced Green Fluorescent Protein UnaG.
Biophys J. 2017 Dec 19;113(12):2805-2814. doi: 10.1016/j.bpj.2017.10.022.
5
A split fluorescent reporter with rapid and reversible complementation.
Nat Commun. 2019 Jun 27;10(1):2822. doi: 10.1038/s41467-019-10855-0.
6
Detection of protein-protein interaction using bimolecular fluorescence complementation assay.
Methods Mol Biol. 2015;1278:483-95. doi: 10.1007/978-1-4939-2425-7_32.
7
A fluorescent probe for imaging p53-MDM2 protein-protein interaction.
Chem Biol Drug Des. 2015 Apr;85(4):411-7. doi: 10.1111/cbdd.12434. Epub 2014 Oct 10.
8
Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies.
J Mol Biol. 2015 Jun 5;427(11):2039-2055. doi: 10.1016/j.jmb.2015.03.005. Epub 2015 Mar 12.
9
Visualizing protein-protein interactions in plants by rapamycin-dependent delocalization.
Plant Cell. 2021 May 31;33(4):1101-1117. doi: 10.1093/plcell/koab004.
10
The structure and function of fluorescent proteins.
Chem Soc Rev. 2009 Oct;38(10):2852-64. doi: 10.1039/b913033k. Epub 2009 Aug 21.

引用本文的文献

1
Protein Engineering for Spatiotemporally Resolved Cellular Monitoring.
Annu Rev Anal Chem (Palo Alto Calif). 2025 May;18(1):217-240. doi: 10.1146/annurev-anchem-070124-035857. Epub 2025 Feb 25.
3
A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction.
J Cell Biol. 2024 Sep 2;223(9). doi: 10.1083/jcb.202311126. Epub 2024 Jul 1.
5
Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes.
Adv Exp Med Biol. 2024;3234:59-71. doi: 10.1007/978-3-031-52193-5_5.
6
Irreversible light-activated SpyLigation mediates split-protein assembly in 4D.
Nat Protoc. 2024 Apr;19(4):1015-1052. doi: 10.1038/s41596-023-00938-0. Epub 2024 Jan 22.
7
A fluorogenic complementation tool kit for interrogating lipid droplet-organelle interaction.
bioRxiv. 2023 Nov 29:2023.11.29.569289. doi: 10.1101/2023.11.29.569289.
8
Spying on SARS-CoV-2 with Fluorescent Tags and Protease Reporters.
Viruses. 2023 Sep 27;15(10):2005. doi: 10.3390/v15102005.
9
Maximizing the performance of protein-based fluorescent biosensors.
Biochem Soc Trans. 2023 Aug 31;51(4):1585-1595. doi: 10.1042/BST20221413.
10
Spatiotemporal functional assembly of split protein pairs through a light-activated SpyLigation.
Nat Chem. 2023 May;15(5):694-704. doi: 10.1038/s41557-023-01152-x. Epub 2023 Apr 17.

本文引用的文献

1
An infrared reporter to detect spatiotemporal dynamics of protein-protein interactions.
Nat Methods. 2014 Jun;11(6):641-4. doi: 10.1038/nmeth.2934. Epub 2014 Apr 20.
2
A bilirubin-inducible fluorescent protein from eel muscle.
Cell. 2013 Jun 20;153(7):1602-11. doi: 10.1016/j.cell.2013.05.038. Epub 2013 Jun 13.
3
Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae.
Nature. 2012 Sep 27;489(7417):585-9. doi: 10.1038/nature11354. Epub 2012 Sep 2.
4
A census of human soluble protein complexes.
Cell. 2012 Aug 31;150(5):1068-81. doi: 10.1016/j.cell.2012.08.011.
5
A protein complex network of Drosophila melanogaster.
Cell. 2011 Oct 28;147(3):690-703. doi: 10.1016/j.cell.2011.08.047.
6
SnapShot: Protein-protein interaction networks.
Cell. 2011 Mar 18;144(6):1000, 1000.e1. doi: 10.1016/j.cell.2011.02.025.
7
Protein-protein interactions: Interactome under construction.
Nature. 2010 Dec 9;468(7325):851-4. doi: 10.1038/468851a.
8
An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio.
Biotechniques. 2010 Nov;49(5):793-805. doi: 10.2144/000113519.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验