Koenig-Robert Roger, VanRullen Rufin, Tsuchiya Naotsugu
School of Psychological Sciences, Faculty of Biomedical and Psychological Sciences, Monash University, Melbourne, Australia.
CNRS, UMR5549, Centre de Recherche Cerveau et Cognition, Faculté de Médecine de Purpan, 31052 Toulouse, France.
PLoS One. 2015 Dec 21;10(12):e0144858. doi: 10.1371/journal.pone.0144858. eCollection 2015.
Primate visual systems process natural images in a hierarchical manner: at the early stage, neurons are tuned to local image features, while neurons in high-level areas are tuned to abstract object categories. Standard models of visual processing assume that the transition of tuning from image features to object categories emerges gradually along the visual hierarchy. Direct tests of such models remain difficult due to confounding alteration in low-level image properties when contrasting distinct object categories. When such contrast is performed in a classic functional localizer method, the desired activation in high-level visual areas is typically accompanied with activation in early visual areas. Here we used a novel image-modulation method called SWIFT (semantic wavelet-induced frequency-tagging), a variant of frequency-tagging techniques. Natural images modulated by SWIFT reveal object semantics periodically while keeping low-level properties constant. Using functional magnetic resonance imaging (fMRI), we indeed found that faces and scenes modulated with SWIFT periodically activated the prototypical category-selective areas while they elicited sustained and constant responses in early visual areas. SWIFT and the localizer were selective and specific to a similar extent in activating category-selective areas. Only SWIFT progressively activated the visual pathway from low- to high-level areas, consistent with predictions from standard hierarchical models. We confirmed these results with criterion-free methods, generalizing the validity of our approach and show that it is possible to dissociate neural activation in early and category-selective areas. Our results provide direct evidence for the hierarchical nature of the representation of visual objects along the visual stream and open up future applications of frequency-tagging methods in fMRI.
在早期阶段,神经元被调整为对局部图像特征敏感,而高级区域的神经元则被调整为对抽象的物体类别敏感。视觉处理的标准模型假设,从图像特征到物体类别的调整转变是沿着视觉层级逐渐出现的。由于在对比不同物体类别时低层次图像属性存在混杂变化,对这类模型的直接测试仍然很困难。当以经典的功能定位方法进行这种对比时,高级视觉区域中期望的激活通常伴随着早期视觉区域的激活。在这里,我们使用了一种名为SWIFT(语义小波诱导频率标记)的新型图像调制方法,它是频率标记技术的一种变体。由SWIFT调制的自然图像在保持低层次属性不变的同时周期性地揭示物体语义。使用功能磁共振成像(fMRI),我们确实发现,用SWIFT调制的面部和场景会周期性地激活典型的类别选择性区域,而它们在早期视觉区域引发持续且恒定的反应。SWIFT和定位器在激活类别选择性区域方面具有相似程度的选择性和特异性。只有SWIFT从低层次到高层次区域逐步激活视觉通路,这与标准分层模型的预测一致。我们用无标准方法证实了这些结果,推广了我们方法的有效性,并表明有可能区分早期和类别选择性区域的神经激活。我们的结果为沿着视觉流的视觉物体表征的分层性质提供了直接证据,并开启了频率标记方法在fMRI中的未来应用。