Turner Andrew J, Katz Richard F, Behn Mark D
Department of Earth Sciences, University of Oxford Oxford, UK.
Department of Geology and Geophysics, Woods Hole Oceanographic Institution Woods Hole, Massachusetts, USA.
Geochem Geophys Geosyst. 2015 Mar;16(3):925-946. doi: 10.1002/2014GC005692. Epub 2015 Mar 26.
Grain size is an important control on mantle viscosity and permeability, but is difficult or impossible to measure in situ. We construct a two-dimensional, single phase model for the steady state mean grain size beneath a mid-ocean ridge. The mantle rheology is modeled as a composite of diffusion creep, dislocation creep, dislocation accommodated grain boundary sliding, and a plastic stress limiter. The mean grain size is calculated by the paleowattmeter relationship of Austin and Evans (2007). We investigate the sensitivity of our model to global variations in grain growth exponent, potential temperature, spreading-rate, and mantle hydration. We interpret the mean grain-size field in terms of its permeability to melt transport. The permeability structure due to mean grain size may be approximated as a high permeability region beneath a low permeability region. The transition between high and low permeability regions occurs across a boundary that is steeply inclined toward the ridge axis. We hypothesize that such a permeability structure generated from the variability of the mean grain size may focus melt toward the ridge axis, analogous to Sparks and Parmentier (1991)-type focusing. This focusing may, in turn, constrain the region where significant melt fractions are observed by seismic or magnetotelluric surveys. This interpretation of melt focusing via the grain-size permeability structure is consistent with MT observation of the asthenosphere beneath the East Pacific Rise.
The grain-size field beneath MORs can vary over orders of magnitude The grain-size field affects the rheology and permeability of the asthenosphere The grain-size field may focus melt toward the ridge axis.
晶粒大小是地幔粘度和渗透率的重要控制因素,但难以或无法原位测量。我们构建了一个二维单相模型,用于研究大洋中脊下方稳态平均晶粒大小。地幔流变学被建模为扩散蠕变、位错蠕变、位错协调晶界滑动和塑性应力限制器的组合。平均晶粒大小通过奥斯汀和埃文斯(2007年)的古功率计关系计算得出。我们研究了模型对晶粒生长指数、势温度、扩张速率和地幔水化全球变化的敏感性。我们根据其对熔体传输的渗透率来解释平均晶粒大小场。由于平均晶粒大小导致的渗透率结构可近似为低渗透率区域下方的高渗透率区域。高低渗透率区域之间的过渡发生在一个向洋中脊轴急剧倾斜的边界上。我们假设,由平均晶粒大小变化产生的这种渗透率结构可能会使熔体向洋中脊轴聚焦,类似于斯帕克斯和帕尔门捷(1991年)类型的聚焦。反过来,这种聚焦可能会限制通过地震或大地电磁测深观测到显著熔体分数的区域。通过晶粒大小渗透率结构对熔体聚焦的这种解释与对东太平洋海隆下方软流圈的大地电磁观测结果一致。
大洋中脊下方的晶粒大小场可能在几个数量级范围内变化;晶粒大小场影响软流圈的流变学和渗透率;晶粒大小场可能使熔体向洋中脊轴聚焦。