Lee Lita, Brooksby Paula A, Hapiot Philippe, Downard Alison J
MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury , Private Bag 4800, Christchurch, New Zealand 8140.
Institut des Sciences Chimiques de Rennes (Equipe MaCSE), CNRS, UMR 6226, Université de Rennes 1 , Campus de Beaulieu, Bat 10C, 35042 Rennes, Cedex, France.
Langmuir. 2016 Jan 19;32(2):468-76. doi: 10.1021/acs.langmuir.5b03233. Epub 2016 Jan 6.
Cyclic voltammograms for the reduction of aryldiazonium ions at glassy carbon electrodes are often, but not always, reported to show two peaks. The origin of this intriguing behavior remains controversial. Using 4-nitrobenzenediazonium ion (NBD), the most widely studied aryldiazonium salt, we make a detailed examination of the electroreduction processes in acetonitrile solution. We confirm that deposition of film can occur during both reduction processes. Film thickness measurements using atomic force microscopy reveal that multilayer films of very similar thickness are formed when reduction is carried out at either peak, even though the film formed at the more negative potential is significantly more blocking to solution redox probes. These and other aspects of the electrochemistry are consistent with the operation of a surface-catalyzed reduction step (proceeding at a clean surface only) followed by an uncatalyzed reduction at a more negative potential. The catalyzed reduction proceeds at both edge-plane and basal-plane graphite materials, suggesting that particular carbon surface sites are not required. The unusual aspect of aryldiazonium ion electrochemistry is that unlike other surface-catalyzed reactions, both processes are seen in a single voltammetric scan at an initially clean electrode because the conditions for observing the uncatalyzed reaction are produced by film deposition during the first catalyzed reduction step.
在玻碳电极上还原芳基重氮离子的循环伏安图常常(但并非总是)显示出两个峰。这种有趣行为的起源仍存在争议。使用研究最为广泛的芳基重氮盐4-硝基苯重氮离子(NBD),我们对乙腈溶液中的电还原过程进行了详细研究。我们证实,在两个还原过程中均会发生膜的沉积。使用原子力显微镜进行的膜厚度测量表明,无论在哪个峰处进行还原,都会形成厚度非常相似的多层膜,尽管在更正的电位下形成的膜对溶液中的氧化还原探针的阻挡作用明显更强。电化学的这些以及其他方面与表面催化还原步骤(仅在清洁表面上进行)然后在更负的电位下进行非催化还原的操作是一致的。催化还原在边缘平面和基面石墨材料上均会发生,这表明不需要特定的碳表面位点。芳基重氮离子电化学的不同寻常之处在于,与其他表面催化反应不同,在初始清洁电极的单次伏安扫描中可以看到这两个过程,因为观察非催化反应的条件是在第一个催化还原步骤中通过膜沉积产生的。