Gao Yongqian, Wise Adam J, Thomas Alan K, Grey John K
Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico , Albuquerque, New Mexico 87131, United States.
ACS Appl Mater Interfaces. 2016 Jan 13;8(1):285-93. doi: 10.1021/acsami.5b08724. Epub 2015 Dec 31.
Molecular spectroscopic and intensity modulated photocurrent spectroscopy (IMPS) imaging techniques are used to map morphology-dependent charge recombination in organic polymer/fullerene solar cells. IMPS uses a small (∼10%) sinusoidal modulation of an excitation light source and photocurrent responses are measured while modulation frequencies are swept over several decades (∼1 Hz-20 kHz). Solar cells consisting of either poly(3-hexylthiophene) (P3HT) and poly(2-methoxy-5-(3'-7'-dimethyloctyloxy)-1,4-phenylenevinylene) (MDMO-PPV) blended with a soluble fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) are used as targets. The morphologies of these polymer/fullerene systems are distinctly different due to PCBM miscibility in various polymer conformers. IMPS responses of both blend solar cells show unique morphology-dependent charge generation, transport and extraction signatures that can be spatially correlated to microscopic variations in local composition and packing by constructing IMPS images along with corresponding molecular spectroscopic imaging over the same scan area. We find that boundaries separating enriched polymer and fullerene domains promote nongeminate charge recombination appearing as positive phase shifts in the IMPS response. These zones are susceptible to degradation and we propose the approaches herein can be used to probe material and device degradation in situ under various conditions, such as oxygen content, temperature and ionizing radiation.
分子光谱和强度调制光电流光谱(IMPS)成像技术被用于绘制有机聚合物/富勒烯太阳能电池中形态依赖的电荷复合情况。IMPS使用一个小的(约10%)激发光源正弦调制,并在调制频率扫过几个数量级(约1赫兹至20千赫兹)时测量光电流响应。由聚(3 - 己基噻吩)(P3HT)和聚(2 - 甲氧基 - 5 - (3'-7'-二甲基辛氧基)-1,4 - 亚苯基乙烯撑)(MDMO - PPV)与可溶性富勒烯衍生物[6,6]-苯基 - C61 - 丁酸甲酯(PCBM)混合组成的太阳能电池用作研究对象。由于PCBM在各种聚合物构象中的混溶性,这些聚合物/富勒烯体系的形态明显不同。两种混合太阳能电池的IMPS响应都显示出独特的形态依赖的电荷产生、传输和提取特征,通过在同一扫描区域构建IMPS图像以及相应的分子光谱成像,可以将这些特征与局部组成和堆积的微观变化进行空间关联。我们发现,分离富集聚合物和富勒烯区域的边界促进了非成对电荷复合,在IMPS响应中表现为正相移。这些区域容易降解,我们提出本文中的方法可用于在各种条件下,如氧气含量、温度和电离辐射下原位探测材料和器件的降解情况。