Castro-Lopez M, Manjavacas A, García de Abajo J, van Hulst N F
Opt Express. 2015 Nov 16;23(23):29296-320. doi: 10.1364/OE.23.029296.
Plasmonic transmission lines have great potential to serve as direct interconnects between nanoscale light spots. The guiding of gap plasmons in the slot between adjacent nanowire pairs provides improved propagation of surface plasmon polaritons while keeping strong light confinement. Yet propagation is fundamentally limited by losses in the metal. Here we show a workaround operation of the gap-plasmon transmission line, exploiting both gap and external modes present in the structure. Interference between these modes allows us to take advantage of the larger propagation distance of the external mode while preserving the high confinement of the gap mode, resulting in nanoscale confinement of the optical field over a longer distance. The performance of the gap-plasmon transmission line is probed experimentally by recording the propagation of quantum dots luminescence over distances of more than 4 μm. We observe a 35% increase in the effective propagation length of this multimode system compared to the theoretical limit for a pure gap mode. The applicability of this simple method to nanofabricated structures is theoretically confirmed and offers a realistic way to combine longer propagation distances with lateral plasmon confinement for far field nanoscale interconnects.
等离子体传输线在作为纳米级光斑之间的直接互连方面具有巨大潜力。相邻纳米线对之间狭缝中的间隙等离子体激元引导,在保持强光限制的同时,改善了表面等离子体激元极化激元的传播。然而,传播从根本上受到金属损耗的限制。在这里,我们展示了间隙等离子体传输线的一种变通操作方法,利用结构中存在的间隙模式和外部模式。这些模式之间的干涉使我们能够利用外部模式较大的传播距离,同时保持间隙模式的高限制,从而在更长距离上实现光场的纳米级限制。通过记录量子点发光在超过4μm距离上的传播,对间隙等离子体传输线的性能进行了实验探测。我们观察到,与纯间隙模式的理论极限相比,该多模系统的有效传播长度增加了35%。从理论上证实了这种简单方法对纳米制造结构的适用性,并为将更长的传播距离与横向等离子体限制相结合以实现远场纳米级互连提供了一种切实可行的方法。