Suppr超能文献

弹性系统中的热力学稳定性:嵌入有限球形弹性固体中的硬球。

Thermodynamic stability in elastic systems: Hard spheres embedded in a finite spherical elastic solid.

作者信息

Solano-Altamirano J M, Goldman Saul

机构信息

Department of Chemistry, the Guelph-Waterloo Centre for Graduate Work in Chemistry and the Guelph-Waterloo Physics Institute, University of Guelph, N1G 2W1, Ontario, Canada.

ELI Beamlines project, Institute of Physics AS CR, v. v. i., Na Slovance 2, 18 221, Prague, Czech Republic.

出版信息

Eur Phys J E Soft Matter. 2015 Dec;38(12):133. doi: 10.1140/epje/i2015-15133-1. Epub 2015 Dec 28.

Abstract

We determined the total system elastic Helmholtz free energy, under the constraints of constant temperature and volume, for systems comprised of one or more perfectly bonded hard spherical inclusions (i.e. "hard spheres") embedded in a finite spherical elastic solid. Dirichlet boundary conditions were applied both at the surface(s) of the hard spheres, and at the outer surface of the elastic solid. The boundary conditions at the surface of the spheres were used to describe the rigid displacements of the spheres, relative to their initial location(s) in the unstressed initial state. These displacements, together with the initial positions, provided the final shape of the strained elastic solid. The boundary conditions at the outer surface of the elastic medium were used to ensure constancy of the system volume. We determined the strain and stress tensors numerically, using a method that combines the Neuber-Papkovich spherical harmonic decomposition, the Schwartz alternating method, and Least-squares for determining the spherical harmonic expansion coefficients. The total system elastic Helmholtz free energy was determined by numerically integrating the elastic Helmholtz free energy density over the volume of the elastic solid, either by a quadrature, or a Monte Carlo method, or both. Depending on the initial position of the hard sphere(s) (or equivalently, the shape of the un-deformed stress-free elastic solid), and the displacements, either stationary or non-stationary Helmholtz free energy minima were found. The non-stationary minima, which involved the hard spheres nearly in contact with one another, corresponded to lower Helmholtz free energies, than did the stationary minima, for which the hard spheres were further away from one another.

摘要

我们确定了在恒温恒容条件下,由嵌入有限球形弹性固体中的一个或多个完美键合的硬球形内含物(即“硬球”)组成的系统的总系统弹性亥姆霍兹自由能。在硬球表面和弹性固体的外表面都施加了狄利克雷边界条件。球表面的边界条件用于描述球相对于其在无应力初始状态下的初始位置的刚性位移。这些位移与初始位置一起,给出了应变弹性固体的最终形状。弹性介质外表面的边界条件用于确保系统体积恒定。我们使用一种结合了诺伊伯 - 帕普科维奇球谐分解、施瓦茨交替法和用于确定球谐展开系数的最小二乘法的方法,数值确定应变张量和应力张量。通过对弹性固体体积上的弹性亥姆霍兹自由能密度进行数值积分来确定总系统弹性亥姆霍兹自由能,积分方法可以是求积法、蒙特卡罗法或两者结合。根据硬球的初始位置(或等效地,未变形无应力弹性固体的形状)以及位移情况,会找到稳定或非稳定的亥姆霍兹自由能最小值。与硬球彼此距离较远的稳定最小值相比,涉及硬球几乎相互接触的非稳定最小值对应更低的亥姆霍兹自由能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验