Suppr超能文献

相似文献

1
Gene Editing in Human Pluripotent Stem Cells: Choosing the Correct Path.
J Stem Cell Regen Biol. 2015;1(1). Epub 2015 Nov 5.
2
3
Gene Editing in Clinical Practice: Where are We?
Indian J Clin Biochem. 2019 Jan;34(1):19-25. doi: 10.1007/s12291-018-0804-4. Epub 2019 Jan 1.
4
TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
Curr Protoc Stem Cell Biol. 2015 Aug 3;34:5B.3.1-5B.3.25. doi: 10.1002/9780470151808.sc05b03s34.
5
Modification of the Genome of Domestic Animals.
Anim Biotechnol. 2017 Jul 3;28(3):198-210. doi: 10.1080/10495398.2016.1261874. Epub 2017 Jan 19.
6
Applications of Alternative Nucleases in the Age of CRISPR/Cas9.
Int J Mol Sci. 2017 Nov 29;18(12):2565. doi: 10.3390/ijms18122565.
7
Genome Editing in Human Pluripotent Stem Cells: Approaches, Pitfalls, and Solutions.
Cell Stem Cell. 2016 Jan 7;18(1):53-65. doi: 10.1016/j.stem.2015.12.002.
8
Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.
Cell Transplant. 2018 Mar;27(3):379-392. doi: 10.1177/0963689718754560. Epub 2018 May 28.
9
A beginner's guide to gene editing.
Exp Physiol. 2018 Apr 1;103(4):439-448. doi: 10.1113/EP086047. Epub 2018 Jan 25.
10
Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
Front Plant Sci. 2016 Dec 20;7:1928. doi: 10.3389/fpls.2016.01928. eCollection 2016.

引用本文的文献

1
Strategies to Improve the Safety of iPSC-Derived β Cells for β Cell Replacement in Diabetes.
Transpl Int. 2022 Aug 24;35:10575. doi: 10.3389/ti.2022.10575. eCollection 2022.
3
Ways of improving precise knock-in by genome-editing technologies.
Hum Genet. 2019 Jan;138(1):1-19. doi: 10.1007/s00439-018-1953-5. Epub 2018 Nov 2.
5
Modeling simple repeat expansion diseases with iPSC technology.
Cell Mol Life Sci. 2016 Nov;73(21):4085-100. doi: 10.1007/s00018-016-2284-0. Epub 2016 Jun 3.

本文引用的文献

1
Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs.
Cell Rep. 2015 Sep 1;12(9):1385-90. doi: 10.1016/j.celrep.2015.07.062. Epub 2015 Aug 20.
2
Cell-Cycle Control of Bivalent Epigenetic Domains Regulates the Exit from Pluripotency.
Stem Cell Reports. 2015 Sep 8;5(3):323-36. doi: 10.1016/j.stemcr.2015.07.005. Epub 2015 Aug 13.
3
TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.
Curr Protoc Stem Cell Biol. 2015 Aug 3;34:5B.3.1-5B.3.25. doi: 10.1002/9780470151808.sc05b03s34.
5
Recent developments and clinical studies utilizing engineered zinc finger nuclease technology.
Cell Mol Life Sci. 2015 Oct;72(20):3819-30. doi: 10.1007/s00018-015-1956-5. Epub 2015 Jun 19.
7
Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9.
Mol Cells. 2015 Jun;38(6):475-81. doi: 10.14348/molcells.2015.0103. Epub 2015 May 19.
9
Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells.
Nat Genet. 2015 May;47(5):469-78. doi: 10.1038/ng.3258. Epub 2015 Mar 30.
10
Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells.
Stem Cell Reports. 2015 Apr 14;4(4):569-77. doi: 10.1016/j.stemcr.2015.02.005. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验