Dufficy Martin K, Khan Saad A, Fedkiw Peter S
Department of Chemical and Biomolecular Engineering, North Carolina State University , 911 Partners Way, Raleigh, North Carolina 27695, United States.
ACS Appl Mater Interfaces. 2016 Jan 20;8(2):1327-36. doi: 10.1021/acsami.5b10069. Epub 2016 Jan 7.
We present a method to produce composite anodes consisting of thermally reduced graphene oxide-containing carbon nanofibers (TRGO/CNFs) via electrospinning a dispersion of polyacrylonitrile (PAN) and graphene oxide (GO) sheets in dimethylformamide followed by heat treatment at 650 °C. A range of GO (1-20 wt % GO relative to polymer concentration) was added to the polymer solution, with each sample comprising similar polymer chain packing and subsequent CNF microstructure, as assessed by X-ray diffraction. An increase from 0 to 20 wt % GO in the fibers led to carbonized nonwovens with enhanced electronic conductivity, as TRGO sheets conductively connected the CNFs. Galvanostatic half-cell cycling revealed that TRGO addition enhanced the specific discharge capacity of the fibers. The optimal GO concentration of 5 wt % GO enhanced first-cycle discharge capacities at C/24 rates (15.6 mA g(-1)) 150% compared to CNFs, with a 400% capacity increase at 2-C rates (750 mA g(-1)). We attribute the capacity enhancement to a high degree of GO exfoliation. The TRGO/CNFs also experienced no capacity fade after 200 cycles at 2-C rates. Impedance spectroscopy of the composite anodes demonstrated that charge-transfer resistances decreased as GO content increased, implying that high GO loadings result in more electrochemically active material.
我们提出了一种制备复合阳极的方法,该复合阳极由含热还原氧化石墨烯的碳纳米纤维(TRGO/CNFs)组成。具体做法是,先将聚丙烯腈(PAN)和氧化石墨烯(GO)片材在二甲基甲酰胺中制成分散液,通过静电纺丝得到前驱体,然后在650℃下进行热处理。将一系列不同含量的GO(相对于聚合物浓度为1 - 20 wt%)添加到聚合物溶液中,通过X射线衍射评估可知,每个样品的聚合物链堆积和随后的CNF微观结构相似。随着纤维中GO含量从0 wt%增加到20 wt%,碳化后的非织造布的电子导电性增强,这是因为TRGO片材将CNFs导电连接起来。恒电流半电池循环测试表明,添加TRGO提高了纤维的比放电容量。5 wt% GO的最佳浓度使在C/24速率(15.6 mA g⁻¹)下的首次循环放电容量相比CNFs提高了150%,在2 - C速率(750 mA g⁻¹)下容量增加了400%。我们将容量的提高归因于高度的GO剥离。TRGO/CNFs在2 - C速率下经过200次循环后也没有容量衰减。复合阳极的阻抗谱表明,随着GO含量的增加,电荷转移电阻降低,这意味着高GO负载量会产生更多的电化学活性材料。