Suppr超能文献

用于人工耳蜗的稀疏非负矩阵分解策略

Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants.

作者信息

Hu Hongmei, Lutman Mark E, Ewert Stephan D, Li Guoping, Bleeck Stefan

机构信息

Institute of Sound and Vibration Research, University of Southampton, UK Medizinische Physik, Universität Oldenburg and Cluster of Excellence "Hearing4all", Oldenburg, Germany

Institute of Sound and Vibration Research, University of Southampton, UK.

出版信息

Trends Hear. 2015 Dec 30;19:2331216515616941. doi: 10.1177/2331216515616941.

Abstract

Current cochlear implant (CI) strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF). Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram) of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR) was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.

摘要

当前的人工耳蜗(CI)策略通过频率子带中的波形包络来传递语音信息。人工耳蜗需要高效的语音处理,以最大化向大脑传输的信息,尤其是在背景噪声环境中,此时语音包络对噪声干扰的抵抗力不强。在这种情况下,分解成频带后的包络可以通过稀疏变换(如非负矩阵分解(NMF))来增强。本文描述了一种新颖的人工耳蜗处理算法,该算法通过将非负矩阵分解应用于22个频率通道的包络矩阵(包络图)来提高在噪声环境中的性能。对其在八人嘈杂噪声环境下的语音进行了评估。首先使用客观测量方法调整关键的稀疏性约束参数,然后通过正常听力和人工耳蜗受试者的主观语音感知实验进行评估。对10名正常听力受试者的声码器模拟结果表明,该算法在选定的稀疏性约束下显著提高了语音清晰度。八名人工耳蜗受试者的结果显示,与标准的先进组合编码器算法相比,总体上没有显著改善,但在八名人工耳蜗受试者中,在信噪比为+15 dB时,单词识别有提高约10个百分点的趋势。此外,观察到语音感知性能的离散度有相当大的降低,先进组合编码器从40%降至93%,而建议的非负矩阵分解编码策略从80%降至100%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d8/4771045/82998b7ca5da/10.1177_2331216515616941-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验