Suppr超能文献

分布式自适应神经网络输出跟踪具有未知死区输入的领导者-跟随者高阶随机非线性多智能体系统。

Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

出版信息

IEEE Trans Cybern. 2017 Jan;47(1):177-185. doi: 10.1109/TCYB.2015.2509482. Epub 2015 Dec 31.

Abstract

This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

摘要

本文研究了一类具有未知非线性死区的高阶随机非线性多智能体系统在有向图拓扑下的分布式输出跟踪一致性控制问题。采用自适应神经网络来逼近未知非线性函数,并采用一个新的不等式来处理完全未知的死区输入。然后,我们基于反推法和动态面控制技术设计了控制器。通过李雅普诺夫稳定性理论严格证明,所得到的闭环系统在半全局一致最终有界意义下是稳定的,并且领导者和跟随者之间的跟踪误差可以趋近于一个小的残差集。最后,通过两个仿真示例验证了所提出方法的有效性和优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验