Savalei Victoria, Falk Carl F
a University of British Columbia.
b University of California , Los Angeles.
Multivariate Behav Res. 2014 Sep-Oct;49(5):407-24. doi: 10.1080/00273171.2014.931800.
Researchers are often advised to write balanced scales (containing an equal number of positively and negatively worded items) when measuring psychological attributes. This practice is recommended to control for acquiescence bias (ACQ). However, little advice has been given on what to do with such data if the researcher subsequently wants to evaluate a 1-factor model for the scale. This article compares 3 approaches for dealing with the presence of ACQ bias, which make different assumptions: an ipsatization approach based on the work of Chan and Bentler (CB; 1993), a confirmatory factor analysis (CFA) approach that includes an ACQ factor with equal loadings (Billiet & McClendon, 2000; Mirowsky & Ross, 1991), and an exploratory factor analysis (EFA) approach with a target rotation (Ferrando, Lorenzo-Seva, & Chico, 2003). We also examine the "do nothing" approach which fits the 1-factor model to the data ignoring the presence of ACQ bias. Our main findings are that the CFA method performs best overall and that it is robust to the violation of its assumptions, the EFA and the CB approaches work well when their assumptions are strictly met, and the "do nothing" approach can be surprisingly robust when the ACQ factor is not very strong.
研究人员在测量心理属性时,通常会被告知编写平衡量表(包含数量相等的正向和负向措辞项目)。建议采用这种做法来控制默许偏差(ACQ)。然而,如果研究人员随后想要评估该量表的单因素模型,对于如何处理此类数据却几乎没有给出任何建议。本文比较了三种处理ACQ偏差存在情况的方法,这些方法做出了不同的假设:一种基于Chan和Bentler(CB;1993)的工作的 ipsatization方法、一种包含具有相等负荷的ACQ因子的验证性因素分析(CFA)方法(Billiet和McClendon,2000;Mirowsky和Ross,1991),以及一种具有目标旋转的探索性因素分析(EFA)方法(Ferrando、Lorenzo-Seva和Chico,2003)。我们还研究了“不做处理”的方法,即忽略ACQ偏差的存在,将单因素模型应用于数据。我们的主要发现是,CFA方法总体表现最佳,并且对其假设的违反具有稳健性;当严格满足其假设时,EFA和CB方法效果良好;当ACQ因子不是很强时,“不做处理”的方法可能会出奇地稳健。