Suppr超能文献

在不确定性条件下通过模糊概率单位回归分析对雨水湿式滞留池进行快速富营养化评估

Fast eutrophication assessment for stormwater wet detention ponds via fuzzy probit regression analysis under uncertainty.

作者信息

Tahsin Subrina, Chang Ni-Bin

机构信息

Civil, Environmental, and Construction Engineering Department, University of Central Florida, Orlando, FL, USA.

出版信息

Environ Monit Assess. 2016 Feb;188(2):77. doi: 10.1007/s10661-015-5073-6. Epub 2016 Jan 5.

Abstract

Stormwater wet detention ponds have been a commonly employed best management practice for stormwater management throughout the world for many years. In the past, the trophic state index values have been used to evaluate seasonal changes in water quality and rank lakes within a region or between several regions; yet, to date, there is no similar index for stormwater wet detention ponds. This study aimed to develop a new multivariate trophic state index (MTSI) suitable for conducting a rapid eutrophication assessment of stormwater wet detention ponds under uncertainty with respect to three typical physical and chemical properties. Six stormwater wet detention ponds in Florida were selected for demonstration of the new MTSI with respect to total phosphorus (TP), total nitrogen (TN), and Secchi disk depth (SDD) as cognitive assessment metrics to sense eutrophication potential collectively and inform the environmental impact holistically. Due to the involvement of multiple endogenous variables (i.e., TN, TP, and SDD) for the eutrophication assessment simultaneously under uncertainty, fuzzy synthetic evaluation was applied to first standardize and synchronize the sources of uncertainty in the decision analysis. The ordered probit regression model was then formulated for assessment based on the concept of MTSI with the inputs from the fuzzy synthetic evaluation. It is indicative that the severe eutrophication condition is present during fall, which might be due to frequent heavy summer storm events contributing to high-nutrient inputs in these six ponds.

摘要

雨水湿式滞留池多年来一直是世界各地常用的雨水管理最佳实践。过去,营养状态指数值已被用于评估水质的季节性变化,并对一个地区内或几个地区之间的湖泊进行排名;然而,迄今为止,还没有针对雨水湿式滞留池的类似指数。本研究旨在开发一种新的多变量营养状态指数(MTSI),适用于在三种典型物理和化学性质存在不确定性的情况下,对雨水湿式滞留池进行快速富营养化评估。选择佛罗里达州的六个雨水湿式滞留池,以总磷(TP)、总氮(TN)和塞氏盘深度(SDD)作为认知评估指标,展示新的MTSI,以共同感知富营养化潜力并全面了解环境影响。由于在不确定性下同时涉及多个用于富营养化评估的内生变量(即TN、TP和SDD),因此应用模糊综合评价首先对决策分析中的不确定性来源进行标准化和同步化。然后基于MTSI的概念,利用模糊综合评价的输入建立有序概率回归模型进行评估。结果表明,秋季存在严重的富营养化状况,这可能是由于夏季频繁的暴雨事件导致这六个池塘的营养物质输入量较高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验