Lai Keke
a University of Notre Dame.
Multivariate Behav Res. 2011 Nov 30;46(6):1013. doi: 10.1080/00273171.2011.636705.
When designing a study that uses structural equation modeling (SEM), an important task is to decide an appropriate sample size. Historically, this task is approached from the power analytic perspective, where the goal is to obtain sufficient power to reject a false null hypothesis. However, hypothesis testing only tells if a population effect is zero and fails to address the question about the population effect size. Moreover, significance tests in the SEM context often reject the null hypothesis too easily, and therefore the problem in practice is having too much power instead of not enough power. An alternative means to infer the population effect is forming confidence intervals (CIs). A CI is more informative than hypothesis testing because a CI provides a range of plausible values for the population effect size of interest. Given the close relationship between CI and sample size, the sample size for an SEM study can be planned with the goal to obtain sufficiently narrow CIs for the population model parameters of interest. Latent curve models (LCMs) is an application of SEM with mean structure to studying change over time. The sample size planning method for LCM from the CI perspective is based on maximum likelihood and expected information matrix. Given a sample, to form a CI for the model parameter of interest in LCM, it requires the sample covariance matrix S, sample mean vector [Formula: see text], and sample size N. Therefore, the width (w) of the resulting CI can be considered a function of S, [Formula: see text], and N. Inverting the CI formation process gives the sample size planning process. The inverted process requires a proxy for the population covariance matrix Σ, population mean vector μ, and the desired width ω as input, and it returns N as output. The specification of the input information for sample size planning needs to be performed based on a systematic literature review. In the context of covariance structure analysis, Lai and Kelley (2011) discussed several practical methods to facilitate specifying Σ and ω for the sample size planning procedure.
在设计使用结构方程模型(SEM)的研究时,一项重要任务是确定合适的样本量。从历史上看,这项任务是从功效分析的角度来处理的,其目标是获得足够的功效以拒绝错误的零假设。然而,假设检验仅能判断总体效应是否为零,却无法解决关于总体效应大小的问题。此外,在SEM背景下的显著性检验往往过于轻易地拒绝零假设,因此在实际中问题是功效过大而非不足。推断总体效应的另一种方法是构建置信区间(CI)。CI比假设检验更具信息量,因为CI为感兴趣的总体效应大小提供了一系列合理的值。鉴于CI与样本量之间的密切关系,可以以获得针对感兴趣的总体模型参数足够窄的CI为目标来规划SEM研究的样本量。潜曲线模型(LCM)是SEM在均值结构方面的一种应用,用于研究随时间的变化。从CI角度来看,LCM的样本量规划方法基于最大似然和期望信息矩阵。给定一个样本,要为LCM中感兴趣的模型参数形成CI,需要样本协方差矩阵S、样本均值向量[公式:见原文]和样本量N。因此,所得CI的宽度(w)可被视为S、[公式:见原文]和N的函数。反转CI形成过程就得到了样本量规划过程。反转过程需要总体协方差矩阵Σ、总体均值向量μ的代理以及期望宽度ω作为输入,并返回N作为输出。样本量规划输入信息的指定需要基于系统的文献综述来进行。在协方差结构分析的背景下,Lai和Kelley(2011)讨论了几种实用方法,以促进为样本量规划程序指定Σ和ω。