Tello Richard, Pouryazdian Saeed, Ferreira Andre, Beheshti Soosan, Krishnan Sridhar, Bastos Teodiano
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6174-7. doi: 10.1109/EMBC.2015.7319802.
This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.
本文提出了一种通过张量模型之间的相关性分析自动检测稳态视觉诱发电位(SSVEPs)的新方法。将通道×频率×时间的三向脑电图张量使用平行因子分析(PARAFAC)模型分解为构成因子矩阵。对脑电图张量进行PARAFAC分析使我们能够将多通道脑电图分解为构成的时间、频谱和空间特征。然后,利用脑电图张量提取的特征与所有目标SSVEP信号的相应模拟特征之间的相关性分析来检测具有局部频谱和空间特征的SSVEPs。相关性最高的SSVEP被选为预期目标。使用8赫兹和13赫兹闪烁的两个闪烁作为视觉刺激,并基于1秒不重叠的数据包进行检测。五名受试者参与了实验,实现了83.34%的最高分类率,信息传输速率(ITR)为21.01比特/分钟。